import torch from .audioldm_modules.latent_diffusion.ema import * from .audioldm_modules.variational_autoencoder.modules import Encoder, Decoder from .audioldm_modules.variational_autoencoder.distributions import DiagonalGaussianDistribution from .audioldm_modules.hifigan.utilities import get_vocoder, vocoder_infer from .audioldm_modules.audio.tools import wav_to_fbank from .audioldm_modules.audio.stft import TacotronSTFT from ...common.get_model import register @register('audioldm_autoencoder') class AudioAutoencoderKL(nn.Module): def __init__( self, ddconfig, lossconfig=None, image_key="fbank", embed_dim=8, time_shuffle=1, subband=1, ckpt_path=None, reload_from_ckpt=None, ignore_keys=[], colorize_nlabels=None, monitor=None, base_learning_rate=1e-5, ): super().__init__() self.encoder = Encoder(**ddconfig) self.decoder = Decoder(**ddconfig) self.subband = int(subband) if self.subband > 1: print("Use subband decomposition %s" % self.subband) self.quant_conv = torch.nn.Conv2d(2 * ddconfig["z_channels"], 2 * embed_dim, 1) self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) self.vocoder = get_vocoder(None, "cpu") self.embed_dim = embed_dim self.fn_STFT = TacotronSTFT() self.time_shuffle = time_shuffle self.reload_from_ckpt = reload_from_ckpt self.reloaded = False self.mean, self.std = None, None def encode(self, x, time=10.0): temp_dtype = x.dtype x = wav_to_fbank( x.float(), target_length=int(time * 102.4), fn_STFT=self.fn_STFT.float() ).to(x.device).to(temp_dtype) x = self.freq_split_subband(x) h = self.encoder(x) moments = self.quant_conv(h) posterior = DiagonalGaussianDistribution(moments) return posterior def decode(self, z): z = self.post_quant_conv(z) dec = self.decoder(z) dec = self.freq_merge_subband(dec) return dec def decode_to_waveform(self, dec): dec = dec.squeeze(1).permute(0, 2, 1) wav_reconstruction = vocoder_infer(dec, self.vocoder) return wav_reconstruction def forward(self, input, sample_posterior=True): posterior = self.encode(input) if sample_posterior: z = posterior.sample() else: z = posterior.mode() if self.flag_first_run: print("Latent size: ", z.size()) self.flag_first_run = False dec = self.decode(z) return dec, posterior def freq_split_subband(self, fbank): if self.subband == 1 or self.image_key != "stft": return fbank bs, ch, tstep, fbins = fbank.size() assert fbank.size(-1) % self.subband == 0 assert ch == 1 return ( fbank.squeeze(1) .reshape(bs, tstep, self.subband, fbins // self.subband) .permute(0, 2, 1, 3) ) def freq_merge_subband(self, subband_fbank): if self.subband == 1 or self.image_key != "stft": return subband_fbank assert subband_fbank.size(1) == self.subband # Channel dimension bs, sub_ch, tstep, fbins = subband_fbank.size() return subband_fbank.permute(0, 2, 1, 3).reshape(bs, tstep, -1).unsqueeze(1)