File size: 2,038 Bytes
f3dcb90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#!/usr/bin/env python

from __future__ import annotations

import gradio as gr

from paper_list import PaperList

DESCRIPTION = '# ICLR 2023 Paper Submissions'
NOTES = '''
- [ICLR 2023](https://openreview.net/group?id=ICLR.cc/2023/Conference)
- [List of submitted papers](https://docs.google.com/spreadsheets/d/1dQMjjetud2edTEREdLiuD4giC244lxY67ZxaL7NiMUc/edit#gid=1277917086)
'''


def main():
    paper_list = PaperList()

    with gr.Blocks(css='style.css') as demo:
        gr.Markdown(DESCRIPTION)

        search_box = gr.Textbox(
            label='Search Title',
            placeholder=
            'You can search for titles with regular expressions. e.g. (?<!sur)face',
            max_lines=1)

        case_sensitive = gr.Checkbox(label='Case Sensitive')

        search_button = gr.Button('Search')

        number_of_papers = gr.Textbox(label='Number of Papers Found')
        table = gr.HTML(show_label=False)

        gr.Markdown(NOTES)

        demo.load(fn=paper_list.render,
                  inputs=[
                      search_box,
                      case_sensitive
                  ],
                  outputs=[
                      number_of_papers,
                      table,
                  ])
        search_box.submit(fn=paper_list.render,
                          inputs=[
                              search_box,
                              case_sensitive
                          ],
                          outputs=[
                              number_of_papers,
                              table,
                          ])

        search_button.click(fn=paper_list.render,
                            inputs=[
                                search_box,
                                case_sensitive
                            ],
                            outputs=[
                                number_of_papers,
                                table,
                            ])

    demo.launch(enable_queue=True, share=False)


if __name__ == '__main__':
    main()