dnaihao commited on
Commit
f2f99bf
·
1 Parent(s): c825a8f

Changed the size if statement

Browse files
Files changed (1) hide show
  1. utils.py +3 -16
utils.py CHANGED
@@ -112,7 +112,7 @@ def add_new_eval(
112
 
113
  upload_data = json.loads(input_file)
114
  print("upload_data:\n", upload_data)
115
- data_row = [f'{upload_data["Model"]}', upload_data['Overall']]
116
  print("data_row:\n", data_row)
117
  submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL,
118
  use_auth_token=HF_TOKEN, repo_type="dataset")
@@ -146,7 +146,7 @@ def search_and_filter_models(df, query, min_size, max_size):
146
  filtered_df = filtered_df[filtered_df['Models'].str.contains(query, case=False, na=False)]
147
 
148
  size_mask = filtered_df['Model Size(B)'].apply(lambda x:
149
- (min_size <= 1000.0 <= max_size) if x == 'unknown'
150
  else (min_size <= x <= max_size))
151
 
152
  filtered_df = filtered_df[size_mask]
@@ -184,7 +184,7 @@ def search_models(df, query):
184
 
185
 
186
  def get_size_range(df):
187
- sizes = df['Model Size(B)'].apply(lambda x: 1000.0 if x == 'unknown' else x)
188
  return float(sizes.min()), float(sizes.max())
189
 
190
 
@@ -196,16 +196,3 @@ def process_model_size(size):
196
  return val
197
  except (ValueError, TypeError):
198
  return 'unknown'
199
-
200
-
201
- def filter_columns_by_subjects(df, selected_subjects=None):
202
- if selected_subjects is None or len(selected_subjects) == 0:
203
- return df[COLUMN_NAMES]
204
-
205
- base_columns = ['Models', 'Model Size(B)', 'Data Source', 'DP Acc']
206
- selected_columns = base_columns + selected_subjects
207
-
208
- available_columns = [col for col in selected_columns if col in df.columns]
209
- return df[available_columns]
210
-
211
-
 
112
 
113
  upload_data = json.loads(input_file)
114
  print("upload_data:\n", upload_data)
115
+ data_row = [f'{upload_data["Model"]}', upload_data['DP Acc']]
116
  print("data_row:\n", data_row)
117
  submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL,
118
  use_auth_token=HF_TOKEN, repo_type="dataset")
 
146
  filtered_df = filtered_df[filtered_df['Models'].str.contains(query, case=False, na=False)]
147
 
148
  size_mask = filtered_df['Model Size(B)'].apply(lambda x:
149
+ (min_size <= 1000.0 <= max_size) if x == 'unknown' or x == '-' or x == 'unk'
150
  else (min_size <= x <= max_size))
151
 
152
  filtered_df = filtered_df[size_mask]
 
184
 
185
 
186
  def get_size_range(df):
187
+ sizes = df['Model Size(B)'].apply(lambda x: 1000.0 if x == 'unknown' or x == '-' or x == 'unk' else x)
188
  return float(sizes.min()), float(sizes.max())
189
 
190
 
 
196
  return val
197
  except (ValueError, TypeError):
198
  return 'unknown'