File size: 1,531 Bytes
38dfef4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

class CodingAgent:
    def __init__(self, model_path):
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.model = AutoModelForCausalLM.from_pretrained(model_path).to(self.device)
        self.tokenizer = AutoTokenizer.from_pretrained(model_path)

    def generate_code(self, prompt, max_length=512, temperature=0.7, top_k=50, top_p=0.95):
        inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
        
        with torch.no_grad():
            outputs = self.model.generate(
                **inputs,
                max_length=max_length,
                temperature=temperature,
                top_k=top_k,
                top_p=top_p,
                do_sample=True,
                num_return_sequences=1,
            )
        
        return self.tokenizer.decode(outputs[0], skip_special_tokens=True)

    def answer_coding_question(self, question):
        prompt = f"As a coding assistant, please answer the following question:\n\nQuestion: {question}\n\nAnswer:"
        return self.generate_code(prompt)

    def explain_code(self, code):
        prompt = f"Please explain the following code:\n\n```python\n{code}\n```\n\nExplanation:"
        return self.generate_code(prompt)

    def suggest_improvements(self, code):
        prompt = f"Please suggest improvements for the following code:\n\n```python\n{code}\n```\n\nSuggestions:"
        return self.generate_code(prompt)