Daniel Nouri commited on
Commit
752eb09
·
1 Parent(s): a501265

Demo of Crowd Counting work by Thanasutives et al

Browse files

Uses API and pretrained models from here:
https://github.com/Pongpisit-Thanasutives/Variations-of-SFANet-for-Crowd-Counting

Files changed (3) hide show
  1. app.py +90 -0
  2. crowd.jpg +0 -0
  3. requirements.txt +8 -0
app.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import subprocess
3
+ import sys
4
+
5
+ import cv2
6
+ import gdown
7
+ from PIL import Image
8
+ import numpy as np
9
+ import streamlit as st
10
+ import torch
11
+ from torchvision import transforms
12
+
13
+
14
+ def setup_env(path='Variations-of-SFANet-for-Crowd-Counting'):
15
+ if os.path.exists(path):
16
+ return path
17
+ subprocess.run(
18
+ [
19
+ 'git',
20
+ 'clone',
21
+ f'https://github.com/Pongpisit-Thanasutives/{path}.git',
22
+ f'{path}',
23
+ ],
24
+ capture_output=True,
25
+ check=True,
26
+ )
27
+ sys.path.append(path)
28
+ with open(os.path.join(path, 'models', '__init__.py'), 'w') as f:
29
+ f.write('')
30
+ return path
31
+
32
+
33
+ def get_model(path, weights):
34
+ from models import M_SFANet_UCF_QNRF
35
+
36
+ model = M_SFANet_UCF_QNRF.Model()
37
+ model.load_state_dict(
38
+ torch.load(weights, map_location=torch.device('cpu')))
39
+ return model.eval()
40
+
41
+
42
+ def download_weights(
43
+ url='https://drive.google.com/uc?id=1fGuH4o0hKbgdP1kaj9rbjX2HUL1IH0oo',
44
+ out="Paper's_weights_UCF_QNRF.zip",
45
+ ):
46
+ weights = "Paper's_weights_UCF_QNRF/best_M-SFANet*_UCF_QNRF.pth"
47
+ if os.path.exists(weights):
48
+ return weights
49
+ gdown.download(url, out)
50
+ subprocess.run(
51
+ ['unzip', out],
52
+ capture_output=True,
53
+ check=True,
54
+ )
55
+ return weights
56
+
57
+
58
+ def transform_image(img):
59
+ trans = transforms.Compose([
60
+ transforms.ToTensor(),
61
+ transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
62
+ ])
63
+ height, width = img.size[1], img.size[0]
64
+ height = round(height / 16) * 16
65
+ width = round(width / 16) * 16
66
+ img = cv2.resize(np.array(img), (width, height), cv2.INTER_CUBIC)
67
+ return trans(Image.fromarray(img))[None, :]
68
+
69
+
70
+ def main():
71
+ st.write("Demo of [Encoder-Decoder Based Convolutional Neural Networks with Multi-Scale-Aware Modules for Crowd Counting](https://arxiv.org/abs/2003.05586)") # noqa
72
+ path = setup_env()
73
+ weights = download_weights()
74
+ model = get_model(path, weights)
75
+
76
+ image_file = st.file_uploader(
77
+ "Upload image", type=['png', 'jpg', 'jpeg'])
78
+ if image_file is not None:
79
+ image = Image.open(image_file).convert('RGB')
80
+ st.image(image)
81
+ density_map = model(transform_image(image))
82
+ density_map_img = density_map.detach().numpy()[0].transpose(1, 2, 0)
83
+ st.image(density_map_img / density_map_img.max())
84
+ st.write("Estimated count: ", torch.sum(density_map).item())
85
+ else:
86
+ st.write("Example image to use that you can drag and drop:")
87
+ st.image(Image.open('crowd.jpg').convert('RGB'))
88
+
89
+
90
+ main()
crowd.jpg ADDED
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ gdown
2
+ numpy
3
+ opencv-python-headless
4
+ Pillow
5
+ streamlit
6
+ torch
7
+ torchvision
8
+