Spaces:
Build error
Build error
Daniel Nouri
commited on
Commit
·
752eb09
1
Parent(s):
a501265
Demo of Crowd Counting work by Thanasutives et al
Browse filesUses API and pretrained models from here:
https://github.com/Pongpisit-Thanasutives/Variations-of-SFANet-for-Crowd-Counting
- app.py +90 -0
- crowd.jpg +0 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import subprocess
|
3 |
+
import sys
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
import gdown
|
7 |
+
from PIL import Image
|
8 |
+
import numpy as np
|
9 |
+
import streamlit as st
|
10 |
+
import torch
|
11 |
+
from torchvision import transforms
|
12 |
+
|
13 |
+
|
14 |
+
def setup_env(path='Variations-of-SFANet-for-Crowd-Counting'):
|
15 |
+
if os.path.exists(path):
|
16 |
+
return path
|
17 |
+
subprocess.run(
|
18 |
+
[
|
19 |
+
'git',
|
20 |
+
'clone',
|
21 |
+
f'https://github.com/Pongpisit-Thanasutives/{path}.git',
|
22 |
+
f'{path}',
|
23 |
+
],
|
24 |
+
capture_output=True,
|
25 |
+
check=True,
|
26 |
+
)
|
27 |
+
sys.path.append(path)
|
28 |
+
with open(os.path.join(path, 'models', '__init__.py'), 'w') as f:
|
29 |
+
f.write('')
|
30 |
+
return path
|
31 |
+
|
32 |
+
|
33 |
+
def get_model(path, weights):
|
34 |
+
from models import M_SFANet_UCF_QNRF
|
35 |
+
|
36 |
+
model = M_SFANet_UCF_QNRF.Model()
|
37 |
+
model.load_state_dict(
|
38 |
+
torch.load(weights, map_location=torch.device('cpu')))
|
39 |
+
return model.eval()
|
40 |
+
|
41 |
+
|
42 |
+
def download_weights(
|
43 |
+
url='https://drive.google.com/uc?id=1fGuH4o0hKbgdP1kaj9rbjX2HUL1IH0oo',
|
44 |
+
out="Paper's_weights_UCF_QNRF.zip",
|
45 |
+
):
|
46 |
+
weights = "Paper's_weights_UCF_QNRF/best_M-SFANet*_UCF_QNRF.pth"
|
47 |
+
if os.path.exists(weights):
|
48 |
+
return weights
|
49 |
+
gdown.download(url, out)
|
50 |
+
subprocess.run(
|
51 |
+
['unzip', out],
|
52 |
+
capture_output=True,
|
53 |
+
check=True,
|
54 |
+
)
|
55 |
+
return weights
|
56 |
+
|
57 |
+
|
58 |
+
def transform_image(img):
|
59 |
+
trans = transforms.Compose([
|
60 |
+
transforms.ToTensor(),
|
61 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
62 |
+
])
|
63 |
+
height, width = img.size[1], img.size[0]
|
64 |
+
height = round(height / 16) * 16
|
65 |
+
width = round(width / 16) * 16
|
66 |
+
img = cv2.resize(np.array(img), (width, height), cv2.INTER_CUBIC)
|
67 |
+
return trans(Image.fromarray(img))[None, :]
|
68 |
+
|
69 |
+
|
70 |
+
def main():
|
71 |
+
st.write("Demo of [Encoder-Decoder Based Convolutional Neural Networks with Multi-Scale-Aware Modules for Crowd Counting](https://arxiv.org/abs/2003.05586)") # noqa
|
72 |
+
path = setup_env()
|
73 |
+
weights = download_weights()
|
74 |
+
model = get_model(path, weights)
|
75 |
+
|
76 |
+
image_file = st.file_uploader(
|
77 |
+
"Upload image", type=['png', 'jpg', 'jpeg'])
|
78 |
+
if image_file is not None:
|
79 |
+
image = Image.open(image_file).convert('RGB')
|
80 |
+
st.image(image)
|
81 |
+
density_map = model(transform_image(image))
|
82 |
+
density_map_img = density_map.detach().numpy()[0].transpose(1, 2, 0)
|
83 |
+
st.image(density_map_img / density_map_img.max())
|
84 |
+
st.write("Estimated count: ", torch.sum(density_map).item())
|
85 |
+
else:
|
86 |
+
st.write("Example image to use that you can drag and drop:")
|
87 |
+
st.image(Image.open('crowd.jpg').convert('RGB'))
|
88 |
+
|
89 |
+
|
90 |
+
main()
|
crowd.jpg
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gdown
|
2 |
+
numpy
|
3 |
+
opencv-python-headless
|
4 |
+
Pillow
|
5 |
+
streamlit
|
6 |
+
torch
|
7 |
+
torchvision
|
8 |
+
|