Spaces:
Paused
Paused
File size: 13,862 Bytes
9046e9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
# -*- coding: utf-8 -*-
"""AIE3final.py
______
Automated Grading System for AIE3 Final Project
______
"""
# Import necessary libraries
import logging
import sys
import os
import re
import zipfile
import tempfile
from typing import List, Dict, Tuple
from dotenv import load_dotenv
from langchain_community.document_loaders import PyMuPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document
from langchain_core.messages import AIMessage
from langchain_openai import OpenAIEmbeddings
from sentence_transformers import SentenceTransformer
from qdrant_client import QdrantClient
from qdrant_client.models import VectorParams, Distance, PointStruct, ScoredPoint
from docx import Document as DocxDocument
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import getpass
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
import openai
import json
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
import chainlit as cl
import asyncio
# Load environment variables
load_dotenv()
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]
openai.api_key = OPENAI_API_KEY
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Define constants
REFERENCE_DOCUMENT_PATH = './Excel Review.pdf'
UPLOAD_FOLDER = './uploads'
# Ensure the upload folder exists
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
def unzip_file(file_path: str, output_dir: str):
with zipfile.ZipFile(file_path, 'r') as zip_ref:
for member in zip_ref.namelist():
if not member.startswith('__MACOSX/'):
zip_ref.extract(member, output_dir)
def read_pdf(file_path: str) -> List[Document]:
loader = PyMuPDFLoader(file_path)
return loader.load()
def read_docx(file_path: str) -> Document:
doc = DocxDocument(file_path)
text = "\n".join([p.text for p in doc.paragraphs])
return Document(page_content=text, metadata={"source": file_path})
def read_files_from_directory(directory: str) -> List[Document]:
documents = []
for root, _, files in os.walk(directory):
for file in files:
file_path = os.path.join(root, file)
if os.path.basename(file_path).startswith('~$'):
continue # Skip temporary files
if file_path.endswith('.docx'):
documents.append(read_docx(file_path))
elif file_path.endswith('.pdf'):
documents.extend(read_pdf(file_path))
return documents
def extract_json(message: AIMessage) -> List[dict]:
text = message.content
pattern = r"```json(.*?)```"
matches = re.findall(pattern, text, re.DOTALL)
try:
return [json.loads(match.strip()) for match in matches]
except Exception:
raise ValueError(f"Failed to parse: {message}")
qa_chat_model = ChatOpenAI(
model="gpt-4o-mini",
temperature=0
)
ref_prompt = f"""
You are given a reference documents. The document contains a mix of instructions, guides, questions, and answers.
Your task is to go through the reference document and extract questions and answers from the document step-by-step.
Use the keyword 'Question #' to identify the start of each question.
Retain the following words until the 'Answer:' as the question.
Use the keyword 'Answer:' to identify the start of each answer.
Retain the follwing words until the 'Question:' as the answer, until the end of the document.
Remove any white spaces such as carriage returns.
Return the question-answer pairs as a key-value pair as Dict type.
---
Reference Document Content:
{{source}}
Please extract the question-answer pairs and return them as JSON.
"""
ref_prompt_template = ChatPromptTemplate.from_template(ref_prompt)
ref_generation_chain = ref_prompt_template | qa_chat_model
student_prompt = f"""
You are given a student assignment document. The document may contain a mix of instructions, guides, questions, and answers.
Your task is to go through the student document and extract answers to questions from the document step-by-step.
Use the reference document as a guide.
Use the keyword 'Question #' to identify each question.
Then for its associated values, search the student document for the answer.
If you do not see any answer in the student document, return 'No answer found'.
Do not make up any answer.
Remove any white spaces such as carriage returns.
Return the original question and the student answer pairs as a key-value pair as Dict type.
---
Reference Content:
{{source}}
Student Content:
{{student}}
Please extract the question-answer pairs and return them as JSON.
"""
student_prompt_template = ChatPromptTemplate.from_template(student_prompt)
student_response_chain = student_prompt_template | qa_chat_model
def split_documents(documents: List[Document]) -> List[Document]:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=100,
length_function=len,
is_separator_regex=False
)
split_docs = text_splitter.split_documents(documents)
total_tokens = sum(len(doc.page_content) for doc in split_docs) # Approximate token count
return split_docs, total_tokens
def generate_embeddings(docs: List[Document]) -> List[List[float]]:
embeddings_model = OpenAIEmbeddings(model="text-embedding-3-small")
embeddings = embeddings_model.embed_documents([doc.page_content for doc in docs])
total_tokens = sum(len(doc.page_content) for doc in docs) # Approximate token count
return embeddings, total_tokens
def prepare_files():
unzip_file('./uploads/fall23_small.zip', './temp')
documents = read_files_from_directory('./temp/fall23_small')
reference_document = read_pdf(REFERENCE_DOCUMENT_PATH)
return documents, reference_document
def process_student(documents, reference):
test_doc = documents[0]
student_result = student_response_chain.invoke({"source": reference.keys(),"student": test_doc })
student_gen_tokens = student_result.usage_metadata["total_tokens"]
student_result = dict(extract_json(student_result)[0])
return student_result, student_gen_tokens
def process_reference(reference_document):
result = ref_generation_chain.invoke({"source": reference_document})
ref_gen_tokens = result.usage_metadata["total_tokens"]
reference = dict(extract_json(result)[0])
answers = {}
for key in reference:
if key.startswith('Question'):
question_number = key.split('#')[1]
answer_key = f'Answer #{question_number}'
answers[key] = reference[answer_key]
return reference, answers, ref_gen_tokens
def split_docs(answers, student_result):
split_reference_docs, ref_tokens = {}, 0
split_student_docs, student_tokens = {}, 0
for key, value in answers.items():
split_docs, tokens = split_documents([Document(page_content=value)])
split_reference_docs[key] = split_docs
ref_tokens += tokens
for key, value in student_result.items():
split_docs, tokens = split_documents([Document(page_content=value)])
split_student_docs[key] = split_docs
student_tokens += tokens
reference_embeddings = {key: generate_embeddings(value)[0] for key, value in split_reference_docs.items()}
student_embeddings = {key: generate_embeddings(value)[0] for key, value in split_student_docs.items()}
return reference_embeddings, student_embeddings, ref_tokens, student_tokens
def compute_cosine_similarity(reference_embeddings: dict, student_embeddings: dict) -> float:
similarity_results = {}
for key in reference_embeddings.keys():
if key not in student_embeddings:
similarity_results[key] = 0
continue
reference_vector = np.array(reference_embeddings[key]).reshape(1, -1)
student_vector = np.array(student_embeddings[key]).reshape(1, -1)
if reference_vector.shape[1] != student_vector.shape[1]:
min_dim = min(reference_vector.shape[1], student_vector.shape[1])
reference_vector = reference_vector[:, :min_dim]
student_vector = student_vector[:, :min_dim]
similarity = cosine_similarity(reference_vector, student_vector)[0][0]
similarity_results[key] = similarity
total_similarity = sum(similarity_results.values())
num_questions = len(similarity_results)
average_similarity = total_similarity / num_questions if num_questions else 0
return average_similarity
def llm_similarity(answers, student_result):
score_prompt = f"""
You are given two dictionaries representing instructor solution and student answers.
Your task is to go through each question to grade the correctness of student answer.
Use the keyword 'Question #' to identify each question.
Then for its associated values, compare student answer against the instructor answer.
If the instructor answer has numerical values, check to make sure the student answer has the same number,
whether it is expressed in numbers or text.
If you do not see any answer in the student answer, assign score 0 for that answer.
For student answer that is similar to instructor, assign a full score of 1.
If the student answer is similar enough, assign a partial score of 0.5.
Otherwise, assign a score of 0.
Return the original question and the student score pairs as a key-value pair as Dict type.
---
Reference Content:
{{source}}
Student Content:
{{student}}
Please extract the question-answer pairs and return them as JSON.
"""
score_prompt_template = ChatPromptTemplate.from_template(score_prompt)
student_score_chain = score_prompt_template | qa_chat_model
student_score = student_score_chain.invoke({"source": answers, "student": student_result })
llm_score_tokens = student_score.usage_metadata["total_tokens"]
student_score = dict(extract_json(student_score)[0])
total_score = sum(student_score.values())
num_questions = len(student_score)
average_score = total_score / num_questions if num_questions else 0
return average_score, llm_score_tokens
def process_data() -> Tuple[float, float, int, int, int]:
documents, reference_document = prepare_files()
reference, answers, ref_gen_tokens = process_reference(reference_document)
student_result, student_gen_tokens = process_student(documents, reference)
reference_embeddings, student_embeddings, ref_tokens, student_tokens = split_docs(answers, student_result)
student_total_tokens = student_gen_tokens + student_tokens
ref_total_tokens = ref_gen_tokens + ref_tokens
average_similarity = compute_cosine_similarity(reference_embeddings, student_embeddings)
average_score, llm_score_tokens = llm_similarity(answers, student_result)
llm_total_tokens = ref_gen_tokens + student_gen_tokens + llm_score_tokens
return average_similarity, average_score, ref_total_tokens, student_total_tokens, llm_total_tokens
async def process_grading():
average_similarity, average_score, ref_total_tokens, student_total_tokens, llm_total_tokens = process_data()
await cl.Message(content=f"Total tokens used for reference documents: {ref_total_tokens}").send()
await cl.Message(content=f"Total tokens used for student documents: {student_total_tokens}").send()
await cl.Message(content=f"Total tokens used by LLM: {llm_total_tokens}").send()
await cl.Message(content=f"Score: {average_similarity}").send()
await cl.Message(content=f"Average Score: {average_score}").send()
@cl.on_chat_start
async def start_chat():
await cl.Message(content="Do you want to proceed with the grading? (yes/no)").send()
# Define a global flag to track the processing state
user_wants_to_continue = False
@cl.on_message
async def on_message(message: cl.Message):
global user_wants_to_continue
if message.content.lower() == 'yes' and not user_wants_to_continue:
# Start processing
processing_message = cl.Message(content="Processing files...")
await processing_message.send() # Send the message immediately
await asyncio.sleep(0.5) # Short delay to ensure the message is displayed
await process_grading()
# Ask user if they want to continue after processing is done
user_wants_to_continue = True
await cl.Message(content="Do you want to continue? (yes/no)").send()
elif user_wants_to_continue:
if message.content.lower() == 'yes':
user_wants_to_continue = False # Reset the flag
await cl.Message(content="Restarting the app...").send()
await asyncio.sleep(1) # Give time for the message to be sent
python = sys.executable
os.execl(python, python, *sys.argv) # Restart the app
elif message.content.lower() == 'no':
user_wants_to_continue = False # Reset the flag
await cl.Message(content="Okay, thank you for using the grading app. Restarting...").send()
await asyncio.sleep(1) # Give time for the message to be sent
python = sys.executable
os.execl(python, python, *sys.argv) # Restart the app
else:
await cl.Message(content="Invalid response. Please type 'yes' or 'no'.").send()
elif message.content.lower() == 'no':
await cl.Message(content="Okay, thank you for using the grading app. Restarting...").send()
await asyncio.sleep(1) # Give time for the message to be sent
python = sys.executable
os.execl(python, python, *sys.argv) # Restart the app
else:
await cl.Message(content="Please type 'yes' to start processing or 'no' to exit.").send() |