File size: 13,862 Bytes
9046e9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
# -*- coding: utf-8 -*-
"""AIE3final.py
______
Automated Grading System for AIE3 Final Project
______
"""

# Import necessary libraries
import logging
import sys
import os
import re
import zipfile
import tempfile
from typing import List, Dict, Tuple
from dotenv import load_dotenv
from langchain_community.document_loaders import PyMuPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document
from langchain_core.messages import AIMessage
from langchain_openai import OpenAIEmbeddings
from sentence_transformers import SentenceTransformer
from qdrant_client import QdrantClient
from qdrant_client.models import VectorParams, Distance, PointStruct, ScoredPoint
from docx import Document as DocxDocument
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import getpass
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
import openai
import json
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
import chainlit as cl
import asyncio

# Load environment variables
load_dotenv()
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]
openai.api_key = OPENAI_API_KEY

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Define constants
REFERENCE_DOCUMENT_PATH = './Excel Review.pdf'
UPLOAD_FOLDER = './uploads'

# Ensure the upload folder exists
os.makedirs(UPLOAD_FOLDER, exist_ok=True)

def unzip_file(file_path: str, output_dir: str):
    with zipfile.ZipFile(file_path, 'r') as zip_ref:
        for member in zip_ref.namelist():
            if not member.startswith('__MACOSX/'):
                zip_ref.extract(member, output_dir)

def read_pdf(file_path: str) -> List[Document]:
    loader = PyMuPDFLoader(file_path)
    return loader.load()

def read_docx(file_path: str) -> Document:
    doc = DocxDocument(file_path)
    text = "\n".join([p.text for p in doc.paragraphs])
    return Document(page_content=text, metadata={"source": file_path})

def read_files_from_directory(directory: str) -> List[Document]:
    documents = []
    for root, _, files in os.walk(directory):
        for file in files:
            file_path = os.path.join(root, file)
            if os.path.basename(file_path).startswith('~$'):
                continue  # Skip temporary files
            if file_path.endswith('.docx'):
                documents.append(read_docx(file_path))
            elif file_path.endswith('.pdf'):
                documents.extend(read_pdf(file_path))
    return documents

def extract_json(message: AIMessage) -> List[dict]:
    text = message.content
    pattern = r"```json(.*?)```"
    matches = re.findall(pattern, text, re.DOTALL)
    try:
        return [json.loads(match.strip()) for match in matches]
    except Exception:
        raise ValueError(f"Failed to parse: {message}")
    
qa_chat_model = ChatOpenAI(
    model="gpt-4o-mini",
    temperature=0
)

ref_prompt = f"""
You are given a reference documents. The document contains a mix of instructions, guides, questions, and answers.
Your task is to go through the reference document and extract questions and answers from the document step-by-step.
Use the keyword 'Question #' to identify the start of each question.
Retain the following words until the 'Answer:' as the question.
Use the keyword 'Answer:' to identify the start of each answer.
Retain the follwing words until the 'Question:' as the answer, until the end of the document.
Remove any white spaces such as carriage returns.
Return the question-answer pairs as a key-value pair as Dict type.
---

Reference Document Content:
{{source}}

Please extract the question-answer pairs and return them as JSON.
"""

ref_prompt_template = ChatPromptTemplate.from_template(ref_prompt)
ref_generation_chain = ref_prompt_template | qa_chat_model

student_prompt = f"""
You are given a student assignment document. The document may contain a mix of instructions, guides, questions, and answers.
Your task is to go through the student document and extract answers to questions from the document step-by-step.
Use the reference document as a guide.
Use the keyword 'Question #' to identify each question.
Then for its associated values, search the student document for the answer.
If you do not see any answer in the student document, return 'No answer found'.
Do not make up any answer.
Remove any white spaces such as carriage returns.
Return the original question and the student answer pairs as a key-value pair as Dict type.
---

Reference Content:
{{source}}

Student Content:
{{student}}

Please extract the question-answer pairs and return them as JSON.
"""

student_prompt_template = ChatPromptTemplate.from_template(student_prompt)
student_response_chain = student_prompt_template | qa_chat_model

def split_documents(documents: List[Document]) -> List[Document]:
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=500,
        chunk_overlap=100,
        length_function=len,
        is_separator_regex=False
    )
    split_docs = text_splitter.split_documents(documents)
    total_tokens = sum(len(doc.page_content) for doc in split_docs)  # Approximate token count
    return split_docs, total_tokens

def generate_embeddings(docs: List[Document]) -> List[List[float]]:
    embeddings_model = OpenAIEmbeddings(model="text-embedding-3-small")
    embeddings = embeddings_model.embed_documents([doc.page_content for doc in docs])
    total_tokens = sum(len(doc.page_content) for doc in docs)  # Approximate token count
    return embeddings, total_tokens

def prepare_files():
    unzip_file('./uploads/fall23_small.zip', './temp')
    documents = read_files_from_directory('./temp/fall23_small')
    reference_document = read_pdf(REFERENCE_DOCUMENT_PATH)
    return documents, reference_document

def process_student(documents, reference):
    test_doc = documents[0]
    student_result = student_response_chain.invoke({"source": reference.keys(),"student": test_doc })
    student_gen_tokens = student_result.usage_metadata["total_tokens"]
    student_result = dict(extract_json(student_result)[0])
    return student_result, student_gen_tokens

def process_reference(reference_document):
    result = ref_generation_chain.invoke({"source": reference_document})
    ref_gen_tokens = result.usage_metadata["total_tokens"]
    reference = dict(extract_json(result)[0])
    
    answers = {}
    for key in reference:
        if key.startswith('Question'):
            question_number = key.split('#')[1]
            answer_key = f'Answer #{question_number}'
            answers[key] = reference[answer_key]
    
    return reference, answers, ref_gen_tokens

def split_docs(answers, student_result):
    split_reference_docs, ref_tokens = {}, 0
    split_student_docs, student_tokens = {}, 0
    for key, value in answers.items():
        split_docs, tokens = split_documents([Document(page_content=value)])
        split_reference_docs[key] = split_docs
        ref_tokens += tokens
    
    for key, value in student_result.items():
        split_docs, tokens = split_documents([Document(page_content=value)])
        split_student_docs[key] = split_docs
        student_tokens += tokens
    
    reference_embeddings = {key: generate_embeddings(value)[0] for key, value in split_reference_docs.items()}
    student_embeddings = {key: generate_embeddings(value)[0] for key, value in split_student_docs.items()}
    
    return reference_embeddings, student_embeddings, ref_tokens, student_tokens

def compute_cosine_similarity(reference_embeddings: dict, student_embeddings: dict) -> float:
    similarity_results = {}
    for key in reference_embeddings.keys():
        if key not in student_embeddings:
            similarity_results[key] = 0
            continue
        reference_vector = np.array(reference_embeddings[key]).reshape(1, -1)
        student_vector = np.array(student_embeddings[key]).reshape(1, -1)
        if reference_vector.shape[1] != student_vector.shape[1]:
            min_dim = min(reference_vector.shape[1], student_vector.shape[1])
            reference_vector = reference_vector[:, :min_dim]
            student_vector = student_vector[:, :min_dim]
        similarity = cosine_similarity(reference_vector, student_vector)[0][0]
        similarity_results[key] = similarity
    
    total_similarity = sum(similarity_results.values())
    num_questions = len(similarity_results)
    average_similarity = total_similarity / num_questions if num_questions else 0
    
    return average_similarity


def llm_similarity(answers, student_result):
    score_prompt = f"""
    You are given two dictionaries representing instructor solution and student answers.
    Your task is to go through each question to grade the correctness of student answer.
    Use the keyword 'Question #' to identify each question.
    Then for its associated values, compare student answer against the instructor answer.
    If the instructor answer has numerical values, check to make sure the student answer has the same number,
    whether it is expressed in numbers or text.
    If you do not see any answer in the student answer, assign score 0 for that answer.
    For student answer that is similar to instructor, assign a full score of 1.
    If the student answer is similar enough, assign a partial score of 0.5.
    Otherwise, assign a score of 0.
    Return the original question and the student score pairs as a key-value pair as Dict type.
    ---

    Reference Content:
    {{source}}

    Student Content:
    {{student}}

    Please extract the question-answer pairs and return them as JSON.
    """

    score_prompt_template = ChatPromptTemplate.from_template(score_prompt)
    student_score_chain = score_prompt_template | qa_chat_model
    
    student_score = student_score_chain.invoke({"source": answers, "student": student_result })
    llm_score_tokens = student_score.usage_metadata["total_tokens"]
    student_score = dict(extract_json(student_score)[0])
    
    total_score = sum(student_score.values())
    num_questions = len(student_score)
    average_score = total_score / num_questions if num_questions else 0
    
    return average_score, llm_score_tokens

def process_data() -> Tuple[float, float, int, int, int]:
    documents, reference_document = prepare_files()
    reference, answers, ref_gen_tokens = process_reference(reference_document)
    student_result, student_gen_tokens = process_student(documents, reference)
    reference_embeddings, student_embeddings, ref_tokens, student_tokens = split_docs(answers, student_result)
    student_total_tokens = student_gen_tokens + student_tokens
    ref_total_tokens = ref_gen_tokens + ref_tokens
    
    average_similarity = compute_cosine_similarity(reference_embeddings, student_embeddings)
    average_score, llm_score_tokens = llm_similarity(answers, student_result)
    llm_total_tokens = ref_gen_tokens + student_gen_tokens + llm_score_tokens
    
    return average_similarity, average_score, ref_total_tokens, student_total_tokens, llm_total_tokens

async def process_grading():
    average_similarity, average_score, ref_total_tokens, student_total_tokens, llm_total_tokens = process_data()
    
    await cl.Message(content=f"Total tokens used for reference documents: {ref_total_tokens}").send()
    await cl.Message(content=f"Total tokens used for student documents: {student_total_tokens}").send()
    await cl.Message(content=f"Total tokens used by LLM: {llm_total_tokens}").send()
    await cl.Message(content=f"Score: {average_similarity}").send()
    await cl.Message(content=f"Average Score: {average_score}").send()

@cl.on_chat_start
async def start_chat():
    await cl.Message(content="Do you want to proceed with the grading? (yes/no)").send()



# Define a global flag to track the processing state
user_wants_to_continue = False

@cl.on_message
async def on_message(message: cl.Message):
    global user_wants_to_continue

    if message.content.lower() == 'yes' and not user_wants_to_continue:
        # Start processing
        processing_message = cl.Message(content="Processing files...")
        await processing_message.send()  # Send the message immediately
        await asyncio.sleep(0.5)  # Short delay to ensure the message is displayed
        await process_grading()
        
        # Ask user if they want to continue after processing is done
        user_wants_to_continue = True
        await cl.Message(content="Do you want to continue? (yes/no)").send()
    
    elif user_wants_to_continue:
        if message.content.lower() == 'yes':
            user_wants_to_continue = False  # Reset the flag
            await cl.Message(content="Restarting the app...").send()
            await asyncio.sleep(1)  # Give time for the message to be sent
            python = sys.executable
            os.execl(python, python, *sys.argv)  # Restart the app
        
        elif message.content.lower() == 'no':
            user_wants_to_continue = False  # Reset the flag
            await cl.Message(content="Okay, thank you for using the grading app. Restarting...").send()
            await asyncio.sleep(1)  # Give time for the message to be sent
            python = sys.executable
            os.execl(python, python, *sys.argv)  # Restart the app
        
        else:
            await cl.Message(content="Invalid response. Please type 'yes' or 'no'.").send()
    
    elif message.content.lower() == 'no':
        await cl.Message(content="Okay, thank you for using the grading app. Restarting...").send()
        await asyncio.sleep(1)  # Give time for the message to be sent
        python = sys.executable
        os.execl(python, python, *sys.argv)  # Restart the app

    else:
        await cl.Message(content="Please type 'yes' to start processing or 'no' to exit.").send()