File size: 5,278 Bytes
dfc6dc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
from enum import Enum
from typing import List
import os
import re
from typing import List
from dotenv import load_dotenv
from openai import OpenAI
import phoenix as px
import llama_index
from llama_index import OpenAIEmbedding
from llama_index.llms import ChatMessage, MessageRole, OpenAI

load_dotenv()


class Chatbot:
    SYSTEM_PROMPT = ""
    DENIED_ANSWER_PROMPT = ""
    CHAT_EXAMPLES = []

    def __init__(self, model_name, chunk_size, vdb_collection_name="test_store"):
        self.model_name = model_name
        self.llm = OpenAI(model=self.model_name)
        self.embed_model = OpenAIEmbedding()
        self.chunk_size = chunk_size

        self.documents = None
        self.index = None
        self.chat_engine = None
        self.service_context = None
        self.vector_store = None
        self.vdb_collection_name = vdb_collection_name

        self._setup_chatbot()

    def _setup_chatbot(self):
        self._setup_observer()
        self._setup_service_context()
        self._setup_vector_store()
        self._load_doucments()
        self._setup_index()
        self._setup_chat_engine()

    def _setup_observer(self):
        px.launch_app()
        llama_index.set_global_handler("arize_phoenix")

    def _load_doucments(self):
        pass
        print(f"Loaded {len(self.documents)} docs")

    def _setup_service_context(self):
        pass
        print("Setup service context...")

    def _setup_vector_store(self):
        pass
        print("Setup vector store...")

    def _setup_index(self):
        if self.documents is None:
            raise ValueError("No documents loaded")
        pass
        print("Built index...")

    def _setup_chat_engine(self):
        if self.index is None:
            raise ValueError("No index built")
        pass
        print("Setup chat engine...")

    def stream_chat(self, message, history):
        print(history)
        print(self.convert_to_chat_messages(history))
        response = self.chat_engine.stream_chat(
            message, chat_history=self.convert_to_chat_messages(history)
        )
        # Stream tokens as they are generated
        partial_message = ""
        for token in response.response_gen:
            partial_message += token
            yield partial_message

        urls = [source.node.metadata.get(
            "file_name") for source in response.source_nodes if source.score >= 0.78 and source.node.metadata.get("file_name")]
        if urls:
            urls = list(set(urls))
            url_section = "\n \n\n---\n\n參考: \n" + \
                "\n".join(f"- {url}" for url in urls)
            partial_message += url_section
            yield partial_message

    def convert_to_chat_messages(self, history: List[List[str]]) -> List[ChatMessage]:
        chat_messages = [ChatMessage(
            role=MessageRole.SYSTEM, content=self.SYSTEM_PROMPT)]
        for conversation in history[-3:]:
            for index, message in enumerate(conversation):
                role = MessageRole.USER if index % 2 == 0 else MessageRole.ASSISTANT
                clean_message = re.sub(
                    r"\n \n\n---\n\n參考: \n.*$", "", message, flags=re.DOTALL)
                chat_messages.append(ChatMessage(
                    role=role, content=clean_message.strip()))
        return chat_messages

    def predict_with_rag(self, message, history):
        return self.stream_chat(message, history)

    # barebone chatgpt methods, shared across all chatbot instance
    def _invoke_chatgpt(self, history, message, is_include_system_prompt=False):
        openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
        history_openai_format = []
        if is_include_system_prompt:
            history_openai_format.append(
                {"role": "system", "content": self.SYSTEM_PROMPT})
        for human, assistant in history:
            history_openai_format.append({"role": "user", "content": human})
            history_openai_format.append(
                {"role": "assistant", "content": assistant})
        history_openai_format.append({"role": "user", "content": message})

        import openai
        print(openai.__version__)
        stream = openai_client.chat.completions.create(
            model=self.model_name,
            messages=history_openai_format,
            temperature=1.0,
            stream=True)
        for part in stream:
            yield part.choices[0].delta.content or ""
        # partial_message = ""
        # for chunk in response:
        #     if len(chunk["choices"][0]["delta"]) != 0:
        #         partial_message = partial_message + \
        #             chunk["choices"][0]["delta"]["content"]
        #         yield partial_message

    # For 'With Prompt Wrapper' - Add system prompt, no Pinecone
    def predict_with_prompt_wrapper(self, message, history):
        yield from self._invoke_chatgpt(history, message, is_include_system_prompt=True)

    # For 'Vanilla ChatGPT' - No system prompt
    def predict_vanilla_chatgpt(self, message, history):
        yield from self._invoke_chatgpt(history, message)


# make a enum of chatbot type and string


class ChatbotVersion(str, Enum):
    CHATGPT_35 = "gpt-3.5-turbo-1106"
    CHATGPT_4 = "gpt-4-1106-preview"