Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -5,11 +5,22 @@ import spaces
|
|
5 |
import torch
|
6 |
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, FluxTransformer2DModel, FluxPipeline
|
7 |
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
|
|
8 |
|
9 |
dtype = torch.bfloat16
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
MAX_SEED = np.iinfo(np.int32).max
|
15 |
MAX_IMAGE_SIZE = 2048
|
@@ -20,14 +31,24 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidan
|
|
20 |
if randomize_seed:
|
21 |
seed = random.randint(0, MAX_SEED)
|
22 |
generator = torch.Generator().manual_seed(seed)
|
23 |
-
image = pipe(
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
return image, seed
|
32 |
|
33 |
examples = [
|
|
|
5 |
import torch
|
6 |
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, FluxTransformer2DModel, FluxPipeline
|
7 |
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
|
10 |
dtype = torch.bfloat16
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
+
repo_name = "ByteDance/Hyper-SD"
|
14 |
+
ckpt_name = "Hyper-FLUX.1-dev-8steps-lora.safetensors"
|
15 |
+
hyper_lora = hf_hub_download(repo_name, ckpt_name)
|
16 |
+
|
17 |
+
pipe = FluxPipeline.from_pretrained(base_model_id, token="xxx")
|
18 |
+
pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name))
|
19 |
+
pipe.fuse_lora(lora_scale=0.125)
|
20 |
+
pipe.to("cuda", dtype=torch.float16)
|
21 |
+
|
22 |
+
|
23 |
+
# pipe = FluxPipeline.from_pretrained("sayakpaul/FLUX.1-merged", torch_dtype=torch.bfloat16).to(device)
|
24 |
|
25 |
MAX_SEED = np.iinfo(np.int32).max
|
26 |
MAX_IMAGE_SIZE = 2048
|
|
|
31 |
if randomize_seed:
|
32 |
seed = random.randint(0, MAX_SEED)
|
33 |
generator = torch.Generator().manual_seed(seed)
|
34 |
+
# image = pipe(
|
35 |
+
# prompt = prompt,
|
36 |
+
# width = width,
|
37 |
+
# height = height,
|
38 |
+
# num_inference_steps = num_inference_steps,
|
39 |
+
# generator = generator,
|
40 |
+
# guidance_scale=guidance_scale
|
41 |
+
# ).images[0]
|
42 |
+
|
43 |
+
image = pipe(prompt=prompt,
|
44 |
+
num_inference_steps=num_inference_steps,
|
45 |
+
guidance_scale=guidance_scale,
|
46 |
+
height=height,
|
47 |
+
width=width,
|
48 |
+
max_sequence_length=256,
|
49 |
+
num_inference_steps=8,
|
50 |
+
generator = generator,
|
51 |
+
guidance_scale=guidance_scale).images[0]
|
52 |
return image, seed
|
53 |
|
54 |
examples = [
|