Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -9,13 +9,13 @@ from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5Tokenize
|
|
9 |
dtype = torch.bfloat16
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
|
12 |
-
pipe = DiffusionPipeline.from_pretrained("
|
13 |
|
14 |
MAX_SEED = np.iinfo(np.int32).max
|
15 |
MAX_IMAGE_SIZE = 2048
|
16 |
|
17 |
@spaces.GPU(duration=190)
|
18 |
-
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5
|
19 |
if randomize_seed:
|
20 |
seed = random.randint(0, MAX_SEED)
|
21 |
generator = torch.Generator().manual_seed(seed)
|
@@ -109,7 +109,7 @@ with gr.Blocks(css=css) as demo:
|
|
109 |
minimum=1,
|
110 |
maximum=50,
|
111 |
step=1,
|
112 |
-
value=
|
113 |
)
|
114 |
|
115 |
gr.Examples(
|
|
|
9 |
dtype = torch.bfloat16
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
|
12 |
+
pipe = DiffusionPipeline.from_pretrained("sayakpaul/FLUX.1-merged", torch_dtype=torch.bfloat16).to(device)
|
13 |
|
14 |
MAX_SEED = np.iinfo(np.int32).max
|
15 |
MAX_IMAGE_SIZE = 2048
|
16 |
|
17 |
@spaces.GPU(duration=190)
|
18 |
+
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=8, progress=gr.Progress(track_tqdm=True)):
|
19 |
if randomize_seed:
|
20 |
seed = random.randint(0, MAX_SEED)
|
21 |
generator = torch.Generator().manual_seed(seed)
|
|
|
109 |
minimum=1,
|
110 |
maximum=50,
|
111 |
step=1,
|
112 |
+
value=8,
|
113 |
)
|
114 |
|
115 |
gr.Examples(
|