Spaces:
doevent
/
Running on Zero

File size: 27,993 Bytes
b7f3942
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cd5bc5
b7f3942
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
"""k-diffusion transformer diffusion models, version 2.
Codes adopted from https://github.com/crowsonkb/k-diffusion
"""

from dataclasses import dataclass
from functools import lru_cache, reduce
import math
from typing import Union

from einops import rearrange
import torch
from torch import nn
import torch._dynamo
from torch.nn import functional as F

from . import flags, flops
from .axial_rope import make_axial_pos


try:
    import natten
except ImportError:
    natten = None

try:
    import flash_attn
except ImportError:
    flash_attn = None


if flags.get_use_compile():
    torch._dynamo.config.cache_size_limit = max(64, torch._dynamo.config.cache_size_limit)
    torch._dynamo.config.suppress_errors = True


# Helpers

def zero_init(layer):
    nn.init.zeros_(layer.weight)
    if layer.bias is not None:
        nn.init.zeros_(layer.bias)
    return layer


def checkpoint(function, *args, **kwargs):
    if flags.get_checkpointing():
        kwargs.setdefault("use_reentrant", True)
        return torch.utils.checkpoint.checkpoint(function, *args, **kwargs)
    else:
        return function(*args, **kwargs)


def downscale_pos(pos):
    pos = rearrange(pos, "... (h nh) (w nw) e -> ... h w (nh nw) e", nh=2, nw=2)
    return torch.mean(pos, dim=-2)


# Param tags

def tag_param(param, tag):
    if not hasattr(param, "_tags"):
        param._tags = set([tag])
    else:
        param._tags.add(tag)
    return param


def tag_module(module, tag):
    for param in module.parameters():
        tag_param(param, tag)
    return module


def apply_wd(module):
    for name, param in module.named_parameters():
        if name.endswith("weight"):
            tag_param(param, "wd")
    return module


def filter_params(function, module):
    for param in module.parameters():
        tags = getattr(param, "_tags", set())
        if function(tags):
            yield param


# Kernels

def linear_geglu(x, weight, bias=None):
    x = x @ weight.mT
    if bias is not None:
        x = x + bias
    x, gate = x.chunk(2, dim=-1)
    return x * F.gelu(gate)


def rms_norm(x, scale, eps):
    dtype = reduce(torch.promote_types, (x.dtype, scale.dtype, torch.float32))
    mean_sq = torch.mean(x.to(dtype)**2, dim=-1, keepdim=True)
    scale = scale.to(dtype) * torch.rsqrt(mean_sq + eps)
    return x * scale.to(x.dtype)


def scale_for_cosine_sim(q, k, scale, eps):
    dtype = reduce(torch.promote_types, (q.dtype, k.dtype, scale.dtype, torch.float32))
    sum_sq_q = torch.sum(q.to(dtype)**2, dim=-1, keepdim=True)
    sum_sq_k = torch.sum(k.to(dtype)**2, dim=-1, keepdim=True)
    sqrt_scale = torch.sqrt(scale.to(dtype))
    scale_q = sqrt_scale * torch.rsqrt(sum_sq_q + eps)
    scale_k = sqrt_scale * torch.rsqrt(sum_sq_k + eps)
    return q * scale_q.to(q.dtype), k * scale_k.to(k.dtype)


def scale_for_cosine_sim_qkv(qkv, scale, eps):
    q, k, v = qkv.unbind(2)
    q, k = scale_for_cosine_sim(q, k, scale[:, None], eps)
    return torch.stack((q, k, v), dim=2)


# Layers

class Linear(nn.Linear):
    def forward(self, x):
        flops.op(flops.op_linear, x.shape, self.weight.shape)
        return super().forward(x)


class LinearGEGLU(nn.Linear):
    def __init__(self, in_features, out_features, bias=True):
        super().__init__(in_features, out_features * 2, bias=bias)
        self.out_features = out_features

    def forward(self, x):
        flops.op(flops.op_linear, x.shape, self.weight.shape)
        return linear_geglu(x, self.weight, self.bias)


class FourierFeatures(nn.Module):
    def __init__(self, in_features, out_features, std=1.):
        super().__init__()
        assert out_features % 2 == 0
        self.register_buffer('weight', torch.randn([out_features // 2, in_features]) * std)

    def forward(self, input):
        f = 2 * math.pi * input @ self.weight.T
        return torch.cat([f.cos(), f.sin()], dim=-1)

class RMSNorm(nn.Module):
    def __init__(self, shape, eps=1e-6):
        super().__init__()
        self.eps = eps
        self.scale = nn.Parameter(torch.ones(shape))

    def extra_repr(self):
        return f"shape={tuple(self.scale.shape)}, eps={self.eps}"

    def forward(self, x):
        return rms_norm(x, self.scale, self.eps)


class AdaRMSNorm(nn.Module):
    def __init__(self, features, cond_features, eps=1e-6):
        super().__init__()
        self.eps = eps
        self.linear = apply_wd(zero_init(Linear(cond_features, features, bias=False)))
        tag_module(self.linear, "mapping")

    def extra_repr(self):
        return f"eps={self.eps},"

    def forward(self, x, cond):
        return rms_norm(x, self.linear(cond)[:, None, None, :] + 1, self.eps)


# Rotary position embeddings

def apply_rotary_emb(x, theta, conj=False):
    out_dtype = x.dtype
    dtype = reduce(torch.promote_types, (x.dtype, theta.dtype, torch.float32))
    d = theta.shape[-1]
    assert d * 2 <= x.shape[-1]
    x1, x2, x3 = x[..., :d], x[..., d : d * 2], x[..., d * 2 :]
    x1, x2, theta = x1.to(dtype), x2.to(dtype), theta.to(dtype)
    cos, sin = torch.cos(theta), torch.sin(theta)
    sin = -sin if conj else sin
    y1 = x1 * cos - x2 * sin
    y2 = x2 * cos + x1 * sin
    y1, y2 = y1.to(out_dtype), y2.to(out_dtype)
    return torch.cat((y1, y2, x3), dim=-1)


def _apply_rotary_emb_inplace(x, theta, conj):
    dtype = reduce(torch.promote_types, (x.dtype, theta.dtype, torch.float32))
    d = theta.shape[-1]
    assert d * 2 <= x.shape[-1]
    x1, x2 = x[..., :d], x[..., d : d * 2]
    x1_, x2_, theta = x1.to(dtype), x2.to(dtype), theta.to(dtype)
    cos, sin = torch.cos(theta), torch.sin(theta)
    sin = -sin if conj else sin
    y1 = x1_ * cos - x2_ * sin
    y2 = x2_ * cos + x1_ * sin
    x1.copy_(y1)
    x2.copy_(y2)


class ApplyRotaryEmbeddingInplace(torch.autograd.Function):
    @staticmethod
    def forward(x, theta, conj):
        _apply_rotary_emb_inplace(x, theta, conj=conj)
        return x

    @staticmethod
    def setup_context(ctx, inputs, output):
        _, theta, conj = inputs
        ctx.save_for_backward(theta)
        ctx.conj = conj

    @staticmethod
    def backward(ctx, grad_output):
        theta, = ctx.saved_tensors
        _apply_rotary_emb_inplace(grad_output, theta, conj=not ctx.conj)
        return grad_output, None, None


def apply_rotary_emb_(x, theta):
    return ApplyRotaryEmbeddingInplace.apply(x, theta, False)


class AxialRoPE(nn.Module):
    def __init__(self, dim, n_heads):
        super().__init__()
        log_min = math.log(math.pi)
        log_max = math.log(10.0 * math.pi)
        freqs = torch.linspace(log_min, log_max, n_heads * dim // 4 + 1)[:-1].exp()
        self.register_buffer("freqs", freqs.view(dim // 4, n_heads).T.contiguous())

    def extra_repr(self):
        return f"dim={self.freqs.shape[1] * 4}, n_heads={self.freqs.shape[0]}"

    def forward(self, pos):
        theta_h = pos[..., None, 0:1] * self.freqs.to(pos.dtype)
        theta_w = pos[..., None, 1:2] * self.freqs.to(pos.dtype)
        return torch.cat((theta_h, theta_w), dim=-1)


# Shifted window attention

def window(window_size, x):
    *b, h, w, c = x.shape
    x = torch.reshape(
        x,
        (*b, h // window_size, window_size, w // window_size, window_size, c),
    )
    x = torch.permute(
        x,
        (*range(len(b)), -5, -3, -4, -2, -1),
    )
    return x


def unwindow(x):
    *b, h, w, wh, ww, c = x.shape
    x = torch.permute(x, (*range(len(b)), -5, -3, -4, -2, -1))
    x = torch.reshape(x, (*b, h * wh, w * ww, c))
    return x


def shifted_window(window_size, window_shift, x):
    x = torch.roll(x, shifts=(window_shift, window_shift), dims=(-2, -3))
    windows = window(window_size, x)
    return windows


def shifted_unwindow(window_shift, x):
    x = unwindow(x)
    x = torch.roll(x, shifts=(-window_shift, -window_shift), dims=(-2, -3))
    return x


@lru_cache
def make_shifted_window_masks(n_h_w, n_w_w, w_h, w_w, shift, device=None):
    ph_coords = torch.arange(n_h_w, device=device)
    pw_coords = torch.arange(n_w_w, device=device)
    h_coords = torch.arange(w_h, device=device)
    w_coords = torch.arange(w_w, device=device)
    patch_h, patch_w, q_h, q_w, k_h, k_w = torch.meshgrid(
        ph_coords,
        pw_coords,
        h_coords,
        w_coords,
        h_coords,
        w_coords,
        indexing="ij",
    )
    is_top_patch = patch_h == 0
    is_left_patch = patch_w == 0
    q_above_shift = q_h < shift
    k_above_shift = k_h < shift
    q_left_of_shift = q_w < shift
    k_left_of_shift = k_w < shift
    m_corner = (
        is_left_patch
        & is_top_patch
        & (q_left_of_shift == k_left_of_shift)
        & (q_above_shift == k_above_shift)
    )
    m_left = is_left_patch & ~is_top_patch & (q_left_of_shift == k_left_of_shift)
    m_top = ~is_left_patch & is_top_patch & (q_above_shift == k_above_shift)
    m_rest = ~is_left_patch & ~is_top_patch
    m = m_corner | m_left | m_top | m_rest
    return m


def apply_window_attention(window_size, window_shift, q, k, v, scale=None):
    # prep windows and masks
    q_windows = shifted_window(window_size, window_shift, q)
    k_windows = shifted_window(window_size, window_shift, k)
    v_windows = shifted_window(window_size, window_shift, v)
    b, heads, h, w, wh, ww, d_head = q_windows.shape
    mask = make_shifted_window_masks(h, w, wh, ww, window_shift, device=q.device)
    q_seqs = torch.reshape(q_windows, (b, heads, h, w, wh * ww, d_head))
    k_seqs = torch.reshape(k_windows, (b, heads, h, w, wh * ww, d_head))
    v_seqs = torch.reshape(v_windows, (b, heads, h, w, wh * ww, d_head))
    mask = torch.reshape(mask, (h, w, wh * ww, wh * ww))

    # do the attention here
    flops.op(flops.op_attention, q_seqs.shape, k_seqs.shape, v_seqs.shape)
    qkv = F.scaled_dot_product_attention(q_seqs, k_seqs, v_seqs, mask, scale=scale)

    # unwindow
    qkv = torch.reshape(qkv, (b, heads, h, w, wh, ww, d_head))
    return shifted_unwindow(window_shift, qkv)


# Transformer layers


def use_flash_2(x):
    if not flags.get_use_flash_attention_2():
        return False
    if flash_attn is None:
        return False
    if x.device.type != "cuda":
        return False
    if x.dtype not in (torch.float16, torch.bfloat16):
        return False
    return True


class SelfAttentionBlock(nn.Module):
    def __init__(self, d_model, d_head, cond_features, dropout=0.0):
        super().__init__()
        self.d_head = d_head
        self.n_heads = d_model // d_head
        self.norm = AdaRMSNorm(d_model, cond_features)
        self.qkv_proj = apply_wd(Linear(d_model, d_model * 3, bias=False))
        self.scale = nn.Parameter(torch.full([self.n_heads], 10.0))
        self.pos_emb = AxialRoPE(d_head // 2, self.n_heads)
        self.dropout = nn.Dropout(dropout)
        self.out_proj = apply_wd(zero_init(Linear(d_model, d_model, bias=False)))

    def extra_repr(self):
        return f"d_head={self.d_head},"

    def forward(self, x, pos, cond):
        skip = x
        x = self.norm(x, cond)
        qkv = self.qkv_proj(x)
        pos = rearrange(pos, "... h w e -> ... (h w) e").to(qkv.dtype)
        theta = self.pos_emb(pos)
        if use_flash_2(qkv):
            qkv = rearrange(qkv, "n h w (t nh e) -> n (h w) t nh e", t=3, e=self.d_head)
            qkv = scale_for_cosine_sim_qkv(qkv, self.scale, 1e-6)
            theta = torch.stack((theta, theta, torch.zeros_like(theta)), dim=-3)
            qkv = apply_rotary_emb_(qkv, theta)
            flops_shape = qkv.shape[-5], qkv.shape[-2], qkv.shape[-4], qkv.shape[-1]
            flops.op(flops.op_attention, flops_shape, flops_shape, flops_shape)
            x = flash_attn.flash_attn_qkvpacked_func(qkv, softmax_scale=1.0)
            x = rearrange(x, "n (h w) nh e -> n h w (nh e)", h=skip.shape[-3], w=skip.shape[-2])
        else:
            q, k, v = rearrange(qkv, "n h w (t nh e) -> t n nh (h w) e", t=3, e=self.d_head)
            q, k = scale_for_cosine_sim(q, k, self.scale[:, None, None], 1e-6)
            theta = theta.movedim(-2, -3)
            q = apply_rotary_emb_(q, theta)
            k = apply_rotary_emb_(k, theta)
            flops.op(flops.op_attention, q.shape, k.shape, v.shape)
            x = F.scaled_dot_product_attention(q, k, v, scale=1.0)
            x = rearrange(x, "n nh (h w) e -> n h w (nh e)", h=skip.shape[-3], w=skip.shape[-2])
        x = self.dropout(x)
        x = self.out_proj(x)
        return x + skip


class NeighborhoodSelfAttentionBlock(nn.Module):
    def __init__(self, d_model, d_head, cond_features, kernel_size, dropout=0.0):
        super().__init__()
        self.d_head = d_head
        self.n_heads = d_model // d_head
        self.kernel_size = kernel_size
        self.norm = AdaRMSNorm(d_model, cond_features)
        self.qkv_proj = apply_wd(Linear(d_model, d_model * 3, bias=False))
        self.scale = nn.Parameter(torch.full([self.n_heads], 10.0))
        self.pos_emb = AxialRoPE(d_head // 2, self.n_heads)
        self.dropout = nn.Dropout(dropout)
        self.out_proj = apply_wd(zero_init(Linear(d_model, d_model, bias=False)))

    def extra_repr(self):
        return f"d_head={self.d_head}, kernel_size={self.kernel_size}"

    def forward(self, x, pos, cond):
        skip = x
        x = self.norm(x, cond)
        qkv = self.qkv_proj(x)
        if natten is None:
            raise ModuleNotFoundError("natten is required for neighborhood attention")
        if natten.has_fused_na():
            q, k, v = rearrange(qkv, "n h w (t nh e) -> t n h w nh e", t=3, e=self.d_head)
            q, k = scale_for_cosine_sim(q, k, self.scale[:, None], 1e-6)
            theta = self.pos_emb(pos)
            q = apply_rotary_emb_(q, theta)
            k = apply_rotary_emb_(k, theta)
            flops.op(flops.op_natten, q.shape, k.shape, v.shape, self.kernel_size)
            x = natten.functional.na2d(q, k, v, self.kernel_size, scale=1.0)
            x = rearrange(x, "n h w nh e -> n h w (nh e)")
        else:
            q, k, v = rearrange(qkv, "n h w (t nh e) -> t n nh h w e", t=3, e=self.d_head)
            q, k = scale_for_cosine_sim(q, k, self.scale[:, None, None, None], 1e-6)
            theta = self.pos_emb(pos).movedim(-2, -4)
            q = apply_rotary_emb_(q, theta)
            k = apply_rotary_emb_(k, theta)
            flops.op(flops.op_natten, q.shape, k.shape, v.shape, self.kernel_size)
            qk = natten.functional.na2d_qk(q, k, self.kernel_size)
            a = torch.softmax(qk, dim=-1).to(v.dtype)
            x = natten.functional.na2d_av(a, v, self.kernel_size)
            x = rearrange(x, "n nh h w e -> n h w (nh e)")
        x = self.dropout(x)
        x = self.out_proj(x)
        return x + skip


class ShiftedWindowSelfAttentionBlock(nn.Module):
    def __init__(self, d_model, d_head, cond_features, window_size, window_shift, dropout=0.0):
        super().__init__()
        self.d_head = d_head
        self.n_heads = d_model // d_head
        self.window_size = window_size
        self.window_shift = window_shift
        self.norm = AdaRMSNorm(d_model, cond_features)
        self.qkv_proj = apply_wd(Linear(d_model, d_model * 3, bias=False))
        self.scale = nn.Parameter(torch.full([self.n_heads], 10.0))
        self.pos_emb = AxialRoPE(d_head // 2, self.n_heads)
        self.dropout = nn.Dropout(dropout)
        self.out_proj = apply_wd(zero_init(Linear(d_model, d_model, bias=False)))

    def extra_repr(self):
        return f"d_head={self.d_head}, window_size={self.window_size}, window_shift={self.window_shift}"

    def forward(self, x, pos, cond):
        skip = x
        x = self.norm(x, cond)
        qkv = self.qkv_proj(x)
        q, k, v = rearrange(qkv, "n h w (t nh e) -> t n nh h w e", t=3, e=self.d_head)
        q, k = scale_for_cosine_sim(q, k, self.scale[:, None, None, None], 1e-6)
        theta = self.pos_emb(pos).movedim(-2, -4)
        q = apply_rotary_emb_(q, theta)
        k = apply_rotary_emb_(k, theta)
        x = apply_window_attention(self.window_size, self.window_shift, q, k, v, scale=1.0)
        x = rearrange(x, "n nh h w e -> n h w (nh e)")
        x = self.dropout(x)
        x = self.out_proj(x)
        return x + skip


class FeedForwardBlock(nn.Module):
    def __init__(self, d_model, d_ff, cond_features, dropout=0.0):
        super().__init__()
        self.norm = AdaRMSNorm(d_model, cond_features)
        self.up_proj = apply_wd(LinearGEGLU(d_model, d_ff, bias=False))
        self.dropout = nn.Dropout(dropout)
        self.down_proj = apply_wd(zero_init(Linear(d_ff, d_model, bias=False)))

    def forward(self, x, cond):
        skip = x
        x = self.norm(x, cond)
        x = self.up_proj(x)
        x = self.dropout(x)
        x = self.down_proj(x)
        return x + skip


class GlobalTransformerLayer(nn.Module):
    def __init__(self, d_model, d_ff, d_head, cond_features, dropout=0.0):
        super().__init__()
        self.self_attn = SelfAttentionBlock(d_model, d_head, cond_features, dropout=dropout)
        self.ff = FeedForwardBlock(d_model, d_ff, cond_features, dropout=dropout)

    def forward(self, x, pos, cond):
        x = checkpoint(self.self_attn, x, pos, cond)
        x = checkpoint(self.ff, x, cond)
        return x


class NeighborhoodTransformerLayer(nn.Module):
    def __init__(self, d_model, d_ff, d_head, cond_features, kernel_size, dropout=0.0):
        super().__init__()
        self.self_attn = NeighborhoodSelfAttentionBlock(d_model, d_head, cond_features, kernel_size, dropout=dropout)
        self.ff = FeedForwardBlock(d_model, d_ff, cond_features, dropout=dropout)

    def forward(self, x, pos, cond):
        x = checkpoint(self.self_attn, x, pos, cond)
        x = checkpoint(self.ff, x, cond)
        return x


class ShiftedWindowTransformerLayer(nn.Module):
    def __init__(self, d_model, d_ff, d_head, cond_features, window_size, index, dropout=0.0):
        super().__init__()
        window_shift = window_size // 2 if index % 2 == 1 else 0
        self.self_attn = ShiftedWindowSelfAttentionBlock(d_model, d_head, cond_features, window_size, window_shift, dropout=dropout)
        self.ff = FeedForwardBlock(d_model, d_ff, cond_features, dropout=dropout)

    def forward(self, x, pos, cond):
        x = checkpoint(self.self_attn, x, pos, cond)
        x = checkpoint(self.ff, x, cond)
        return x


class NoAttentionTransformerLayer(nn.Module):
    def __init__(self, d_model, d_ff, cond_features, dropout=0.0):
        super().__init__()
        self.ff = FeedForwardBlock(d_model, d_ff, cond_features, dropout=dropout)

    def forward(self, x, pos, cond):
        x = checkpoint(self.ff, x, cond)
        return x


class Level(nn.ModuleList):
    def forward(self, x, *args, **kwargs):
        for layer in self:
            x = layer(x, *args, **kwargs)
        return x


# Mapping network

class MappingFeedForwardBlock(nn.Module):
    def __init__(self, d_model, d_ff, dropout=0.0):
        super().__init__()
        self.norm = RMSNorm(d_model)
        self.up_proj = apply_wd(LinearGEGLU(d_model, d_ff, bias=False))
        self.dropout = nn.Dropout(dropout)
        self.down_proj = apply_wd(zero_init(Linear(d_ff, d_model, bias=False)))

    def forward(self, x):
        skip = x
        x = self.norm(x)
        x = self.up_proj(x)
        x = self.dropout(x)
        x = self.down_proj(x)
        return x + skip


class MappingNetwork(nn.Module):
    def __init__(self, n_layers, d_model, d_ff, dropout=0.0):
        super().__init__()
        self.in_norm = RMSNorm(d_model)
        self.blocks = nn.ModuleList([MappingFeedForwardBlock(d_model, d_ff, dropout=dropout) for _ in range(n_layers)])
        self.out_norm = RMSNorm(d_model)

    def forward(self, x):
        x = self.in_norm(x)
        for block in self.blocks:
            x = block(x)
        x = self.out_norm(x)
        return x


# Token merging and splitting

class TokenMerge(nn.Module):
    def __init__(self, in_features, out_features, patch_size=(2, 2)):
        super().__init__()
        self.h = patch_size[0]
        self.w = patch_size[1]
        self.proj = apply_wd(Linear(in_features * self.h * self.w, out_features, bias=False))

    def forward(self, x):
        x = rearrange(x, "... (h nh) (w nw) e -> ... h w (nh nw e)", nh=self.h, nw=self.w)
        return self.proj(x)


class TokenSplitWithoutSkip(nn.Module):
    def __init__(self, in_features, out_features, patch_size=(2, 2)):
        super().__init__()
        self.h = patch_size[0]
        self.w = patch_size[1]
        self.proj = apply_wd(Linear(in_features, out_features * self.h * self.w, bias=False))

    def forward(self, x):
        x = self.proj(x)
        return rearrange(x, "... h w (nh nw e) -> ... (h nh) (w nw) e", nh=self.h, nw=self.w)


class TokenSplit(nn.Module):
    def __init__(self, in_features, out_features, patch_size=(2, 2)):
        super().__init__()
        self.h = patch_size[0]
        self.w = patch_size[1]
        self.proj = apply_wd(Linear(in_features, out_features * self.h * self.w, bias=False))
        self.fac = nn.Parameter(torch.ones(1) * 0.5)

    def forward(self, x, skip):
        x = self.proj(x)
        x = rearrange(x, "... h w (nh nw e) -> ... (h nh) (w nw) e", nh=self.h, nw=self.w)
        return torch.lerp(skip, x, self.fac.to(x.dtype))


# Configuration

@dataclass
class GlobalAttentionSpec:
    d_head: int


@dataclass
class NeighborhoodAttentionSpec:
    d_head: int
    kernel_size: int


@dataclass
class ShiftedWindowAttentionSpec:
    d_head: int
    window_size: int


@dataclass
class NoAttentionSpec:
    pass


@dataclass
class LevelSpec:
    depth: int
    width: int
    d_ff: int
    self_attn: Union[GlobalAttentionSpec, NeighborhoodAttentionSpec, ShiftedWindowAttentionSpec, NoAttentionSpec]
    dropout: float


@dataclass
class MappingSpec:
    depth: int
    width: int
    d_ff: int
    dropout: float


# Model class

class ImageTransformerDenoiserModelV2(nn.Module):
    def __init__(self, levels, mapping, in_channels, out_channels, patch_size, num_classes=0, mapping_cond_dim=0, degradation_params_dim=None):
        super().__init__()
        self.num_classes = num_classes
        self.patch_in = TokenMerge(in_channels, levels[0].width, patch_size)
        self.mapping_width = mapping.width
        self.time_emb = FourierFeatures(1, mapping.width)
        self.time_in_proj = Linear(mapping.width, mapping.width, bias=False)
        self.aug_emb = FourierFeatures(9, mapping.width)
        self.aug_in_proj = Linear(mapping.width, mapping.width, bias=False)
        self.degradation_proj = Linear(degradation_params_dim, mapping.width, bias=False) if degradation_params_dim else None
        self.class_emb = nn.Embedding(num_classes, mapping.width) if num_classes else None
        self.mapping_cond_in_proj = Linear(mapping_cond_dim, mapping.width, bias=False) if mapping_cond_dim else None
        self.mapping = tag_module(MappingNetwork(mapping.depth, mapping.width, mapping.d_ff, dropout=mapping.dropout), "mapping")

        self.down_levels, self.up_levels = nn.ModuleList(), nn.ModuleList()
        for i, spec in enumerate(levels):
            if isinstance(spec.self_attn, GlobalAttentionSpec):
                layer_factory = lambda _: GlobalTransformerLayer(spec.width, spec.d_ff, spec.self_attn.d_head, mapping.width, dropout=spec.dropout)
            elif isinstance(spec.self_attn, NeighborhoodAttentionSpec):
                layer_factory = lambda _: NeighborhoodTransformerLayer(spec.width, spec.d_ff, spec.self_attn.d_head, mapping.width, spec.self_attn.kernel_size, dropout=spec.dropout)
            elif isinstance(spec.self_attn, ShiftedWindowAttentionSpec):
                layer_factory = lambda i: ShiftedWindowTransformerLayer(spec.width, spec.d_ff, spec.self_attn.d_head, mapping.width, spec.self_attn.window_size, i, dropout=spec.dropout)
            elif isinstance(spec.self_attn, NoAttentionSpec):
                layer_factory = lambda _: NoAttentionTransformerLayer(spec.width, spec.d_ff, mapping.width, dropout=spec.dropout)
            else:
                raise ValueError(f"unsupported self attention spec {spec.self_attn}")

            if i < len(levels) - 1:
                self.down_levels.append(Level([layer_factory(i) for i in range(spec.depth)]))
                self.up_levels.append(Level([layer_factory(i + spec.depth) for i in range(spec.depth)]))
            else:
                self.mid_level = Level([layer_factory(i) for i in range(spec.depth)])

        self.merges = nn.ModuleList([TokenMerge(spec_1.width, spec_2.width) for spec_1, spec_2 in zip(levels[:-1], levels[1:])])
        self.splits = nn.ModuleList([TokenSplit(spec_2.width, spec_1.width) for spec_1, spec_2 in zip(levels[:-1], levels[1:])])

        self.out_norm = RMSNorm(levels[0].width)
        self.patch_out = TokenSplitWithoutSkip(levels[0].width, out_channels, patch_size)
        nn.init.zeros_(self.patch_out.proj.weight)

    def param_groups(self, base_lr=5e-4, mapping_lr_scale=1 / 3):
        wd = filter_params(lambda tags: "wd" in tags and "mapping" not in tags, self)
        no_wd = filter_params(lambda tags: "wd" not in tags and "mapping" not in tags, self)
        mapping_wd = filter_params(lambda tags: "wd" in tags and "mapping" in tags, self)
        mapping_no_wd = filter_params(lambda tags: "wd" not in tags and "mapping" in tags, self)
        groups = [
            {"params": list(wd), "lr": base_lr},
            {"params": list(no_wd), "lr": base_lr, "weight_decay": 0.0},
            {"params": list(mapping_wd), "lr": base_lr * mapping_lr_scale},
            {"params": list(mapping_no_wd), "lr": base_lr * mapping_lr_scale, "weight_decay": 0.0}
        ]
        return groups

    def forward(self, x, sigma=None, aug_cond=None, class_cond=None, mapping_cond=None, degradation_params=None):
        # Patching
        x = x.movedim(-3, -1)
        x = self.patch_in(x)
        # TODO: pixel aspect ratio for nonsquare patches
        pos = make_axial_pos(x.shape[-3], x.shape[-2], device=x.device).view(x.shape[-3], x.shape[-2], 2)

        # Mapping network
        if class_cond is None and self.class_emb is not None:
            raise ValueError("class_cond must be specified if num_classes > 0")
        if mapping_cond is None and self.mapping_cond_in_proj is not None:
            raise ValueError("mapping_cond must be specified if mapping_cond_dim > 0")

        # c_noise = torch.log(sigma) / 4
        # c_noise = (sigma * 2.0 - 1.0)
        # c_noise = sigma * 2 - 1
        if sigma is not None:
            time_emb = self.time_in_proj(self.time_emb(sigma[..., None]))
        else:
            time_emb = self.time_in_proj(torch.ones(1, 1, device=x.device, dtype=x.dtype).expand(x.shape[0], self.mapping_width))
        # time_emb = self.time_in_proj(sigma[..., None])

        aug_cond = x.new_zeros([x.shape[0], 9]) if aug_cond is None else aug_cond
        aug_emb = self.aug_in_proj(self.aug_emb(aug_cond))
        class_emb = self.class_emb(class_cond) if self.class_emb is not None else 0
        mapping_emb = self.mapping_cond_in_proj(mapping_cond) if self.mapping_cond_in_proj is not None else 0
        degradation_emb = self.degradation_proj(degradation_params) if degradation_params is not None else 0
        cond = self.mapping(time_emb + aug_emb + class_emb + mapping_emb + degradation_emb)

        # Hourglass transformer
        skips, poses = [], []
        for down_level, merge in zip(self.down_levels, self.merges):
            x = down_level(x, pos, cond)
            skips.append(x)
            poses.append(pos)
            x = merge(x)
            pos = downscale_pos(pos)

        x = self.mid_level(x, pos, cond)

        for up_level, split, skip, pos in reversed(list(zip(self.up_levels, self.splits, skips, poses))):
            x = split(x, skip)
            x = up_level(x, pos, cond)

        # Unpatching
        x = self.out_norm(x)
        x = self.patch_out(x)
        x = x.movedim(-1, -3)

        return x