Spaces:
doevent
/
Running on Zero

File size: 1,278 Bytes
b7f3942
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
"""k-diffusion transformer diffusion models, version 2.
Codes adopted from https://github.com/crowsonkb/k-diffusion
"""

from contextlib import contextmanager
import math
import threading


state = threading.local()
state.flop_counter = None


@contextmanager
def flop_counter(enable=True):
    try:
        old_flop_counter = state.flop_counter
        state.flop_counter = FlopCounter() if enable else None
        yield state.flop_counter
    finally:
        state.flop_counter = old_flop_counter


class FlopCounter:
    def __init__(self):
        self.ops = []

    def op(self, op, *args, **kwargs):
        self.ops.append((op, args, kwargs))

    @property
    def flops(self):
        flops = 0
        for op, args, kwargs in self.ops:
            flops += op(*args, **kwargs)
        return flops


def op(op, *args, **kwargs):
    if getattr(state, "flop_counter", None):
        state.flop_counter.op(op, *args, **kwargs)


def op_linear(x, weight):
    return math.prod(x) * weight[0]


def op_attention(q, k, v):
    *b, s_q, d_q = q
    *b, s_k, d_k = k
    *b, s_v, d_v = v
    return math.prod(b) * s_q * s_k * (d_q + d_v)


def op_natten(q, k, v, kernel_size):
    *q_rest, d_q = q
    *_, d_v = v
    return math.prod(q_rest) * (d_q + d_v) * kernel_size**2