Spaces:
doevent
/
Running on Zero

PMRF / app.py
ohayonguy
test
3cd5bc5
raw
history blame
6.82 kB
import os
if os.getenv('SPACES_ZERO_GPU') == "true":
os.environ['SPACES_ZERO_GPU'] = "1"
os.environ['K_DIFFUSION_USE_COMPILE'] = "0"
import spaces
import cv2
import gradio as gr
import torch
from basicsr.archs.srvgg_arch import SRVGGNetCompact
from basicsr.utils import img2tensor, tensor2img
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
from realesrgan.utils import RealESRGANer
from lightning_models.mmse_rectified_flow import MMSERectifiedFlow
torch.set_grad_enabled(False)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
os.makedirs('pretrained_models', exist_ok=True)
realesr_model_path = 'pretrained_models/RealESRGAN_x4plus.pth'
if not os.path.exists(realesr_model_path):
os.system(
"wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -O pretrained_models/RealESRGAN_x4plus.pth")
# background enhancer with RealESRGAN
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
half = True if torch.cuda.is_available() else False
upsampler = RealESRGANer(scale=4, model_path=realesr_model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
pmrf = MMSERectifiedFlow.from_pretrained('ohayonguy/PMRF_blind_face_image_restoration').to(device)
face_helper_dummy = FaceRestoreHelper(
1,
face_size=512,
crop_ratio=(1, 1),
det_model='retinaface_resnet50',
save_ext='png',
use_parse=True,
device=device,
model_rootpath=None)
os.makedirs('output', exist_ok=True)
def generate_reconstructions(pmrf_model, x, y, non_noisy_z0, num_flow_steps, device):
source_dist_samples = pmrf_model.create_source_distribution_samples(x, y, non_noisy_z0)
dt = (1.0 / num_flow_steps) * (1.0 - pmrf_model.hparams.eps)
x_t_next = source_dist_samples.clone()
t_one = torch.ones(x.shape[0], device=device)
for i in range(num_flow_steps):
num_t = (i / num_flow_steps) * (1.0 - pmrf_model.hparams.eps) + pmrf_model.hparams.eps
v_t_next = pmrf_model(x_t=x_t_next, t=t_one * num_t, y=y).to(x_t_next.dtype)
x_t_next = x_t_next.clone() + v_t_next * dt
return x_t_next.clip(0, 1).to(torch.float32)
def enhance_face(img, face_helper, has_aligned, only_center_face=False, paste_back=True, scale=2):
face_helper.clean_all()
if has_aligned: # the inputs are already aligned
img = cv2.resize(img, (512, 512))
face_helper.cropped_faces = [img]
else:
face_helper.read_image(img)
face_helper.get_face_landmarks_5(only_center_face=only_center_face, eye_dist_threshold=5)
# eye_dist_threshold=5: skip faces whose eye distance is smaller than 5 pixels
# TODO: even with eye_dist_threshold, it will still introduce wrong detections and restorations.
# align and warp each face
face_helper.align_warp_face()
# face restoration
for cropped_face in face_helper.cropped_faces:
# prepare data
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
dummy_x = torch.zeros_like(cropped_face_t)
with torch.autocast("cuda", dtype=torch.bfloat16):
output = generate_reconstructions(pmrf, dummy_x, cropped_face_t, None, 25, device)
restored_face = tensor2img(output.to(torch.float32).squeeze(0), rgb2bgr=True, min_max=(0, 1))
# restored_face = cropped_face
restored_face = restored_face.astype('uint8')
face_helper.add_restored_face(restored_face)
if not has_aligned and paste_back:
# upsample the background
if upsampler is not None:
# Now only support RealESRGAN for upsampling background
bg_img = upsampler.enhance(img, outscale=scale)[0]
else:
bg_img = None
face_helper.get_inverse_affine(None)
# paste each restored face to the input image
restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img)
return face_helper.cropped_faces, face_helper.restored_faces, restored_img
else:
return face_helper.cropped_faces, face_helper.restored_faces, None
@spaces.GPU()
def inference(img, aligned, scale, num_steps):
if scale > 4:
scale = 4 # avoid too large scale value
img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
if len(img.shape) == 3 and img.shape[2] == 4:
img_mode = 'RGBA'
elif len(img.shape) == 2: # for gray inputs
img_mode = None
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
else:
img_mode = None
h, w = img.shape[0:2]
if h > 3500 or w > 3500:
print('Image size too large.')
return None, None
if h < 300:
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
face_helper = FaceRestoreHelper(
scale,
face_size=512,
crop_ratio=(1, 1),
det_model='retinaface_resnet50',
save_ext='png',
use_parse=True,
device=device,
model_rootpath=None)
has_aligned = True if aligned == 'Yes' else False
_, restored_aligned, restored_img = enhance_face(img, face_helper, has_aligned, only_center_face=False,
paste_back=True)
if has_aligned:
output = restored_aligned[0]
else:
output = restored_img
# try:
# if scale != 2:
# interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
# h, w = img.shape[0:2]
# output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
# except Exception as error:
# print('Wrong scale input.', error)
if img_mode == 'RGBA': # RGBA images should be saved in png format
extension = 'png'
else:
extension = 'jpg'
save_path = f'output/out.{extension}'
cv2.imwrite(save_path, output)
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
return output, save_path
# except Exception as error:
# print('global exception', error)
# return None, None
css = r"""
"""
demo = gr.Interface(
inference, [
gr.Image(type="filepath", label="Input"),
gr.Radio(['Yes', 'No'], type="value", value='aligned', label='Is the input an aligned face image?'),
gr.Number(label="Rescaling factor (the rescaling factor of the final image)", value=2),
gr.Number(label="Number of flow steps. A higher value should result in better image quality, but this comes at the expense of runtime.", value=25),
], [
gr.Image(type="numpy", label="Output"),
gr.File(label="Download the output image")
],
)
demo.queue()
demo.launch(state_session_capacity=15)