|
import os |
|
from contextlib import contextmanager, nullcontext |
|
|
|
import torch |
|
import wandb |
|
from pytorch_lightning import LightningModule |
|
from torch.nn.functional import mse_loss |
|
from torch.nn.functional import sigmoid |
|
from torch.optim import AdamW |
|
from torch_ema import ExponentialMovingAverage as EMA |
|
from torchmetrics.image.fid import FrechetInceptionDistance |
|
from torchmetrics.image.inception import InceptionScore |
|
from torchvision.transforms.functional import to_pil_image |
|
from torchvision.utils import save_image |
|
from utils.create_arch import create_arch |
|
from huggingface_hub import PyTorchModelHubMixin |
|
|
|
|
|
|
|
class MMSERectifiedFlow(LightningModule, |
|
PyTorchModelHubMixin, |
|
pipeline_tag="image-to-image", |
|
license="mit", |
|
): |
|
def __init__(self, |
|
stage, |
|
arch, |
|
conditional=False, |
|
mmse_model_ckpt_path=None, |
|
mmse_model_arch=None, |
|
lr=5e-4, |
|
weight_decay=1e-3, |
|
betas=(0.9, 0.95), |
|
mmse_noise_std=0.1, |
|
num_flow_steps=50, |
|
ema_decay=0.9999, |
|
eps=0.0, |
|
t_schedule='stratified_uniform', |
|
*args, |
|
**kwargs |
|
): |
|
super().__init__() |
|
self.save_hyperparameters(logger=False) |
|
|
|
if stage == 'flow': |
|
if conditional: |
|
condition_channels = 3 |
|
else: |
|
condition_channels = 0 |
|
if mmse_model_arch is None and 'colorization' in kwargs and kwargs['colorization']: |
|
condition_channels //= 3 |
|
self.model = create_arch(arch, condition_channels) |
|
self.mmse_model = create_arch(mmse_model_arch, 0) if mmse_model_arch is not None else None |
|
if mmse_model_ckpt_path is not None: |
|
ckpt = torch.load(mmse_model_ckpt_path, map_location="cpu") |
|
if mmse_model_arch is None: |
|
mmse_model_arch = ckpt['hyper_parameters']['arch'] |
|
self.mmse_model = create_arch(mmse_model_arch, 0) |
|
if 'ema' in ckpt: |
|
|
|
mmse_ema = EMA(self.mmse_model.parameters(), decay=ema_decay) |
|
mmse_ema.load_state_dict(ckpt['ema']) |
|
mmse_ema.copy_to() |
|
elif 'params_ema' in ckpt: |
|
self.mmse_model.load_state_dict(ckpt['params_ema']) |
|
else: |
|
state_dict = ckpt['state_dict'] |
|
state_dict = {layer_name.replace('model.', ''): weights for layer_name, weights in |
|
state_dict.items()} |
|
state_dict = {layer_name.replace('module.', ''): weights for layer_name, weights in |
|
state_dict.items()} |
|
self.mmse_model.load_state_dict(state_dict) |
|
for param in self.mmse_model.parameters(): |
|
param.requires_grad = False |
|
self.mmse_model.eval() |
|
else: |
|
assert stage == 'mmse' or stage == 'naive_flow' |
|
assert not conditional |
|
self.model = create_arch(arch, 0) |
|
self.mmse_model = None |
|
if 'flow' in stage: |
|
self.fid = FrechetInceptionDistance(reset_real_features=True, normalize=True) |
|
self.inception_score = InceptionScore(normalize=True) |
|
|
|
self.ema = EMA(self.model.parameters(), decay=ema_decay) if self.ema_wanted else None |
|
self.test_results_path = None |
|
|
|
@property |
|
def ema_wanted(self): |
|
return self.hparams.ema_decay != -1 |
|
|
|
def on_save_checkpoint(self, checkpoint: dict) -> None: |
|
if self.ema_wanted: |
|
checkpoint['ema'] = self.ema.state_dict() |
|
return super().on_save_checkpoint(checkpoint) |
|
|
|
def on_load_checkpoint(self, checkpoint: dict) -> None: |
|
if self.ema_wanted: |
|
self.ema.load_state_dict(checkpoint['ema']) |
|
return super().on_load_checkpoint(checkpoint) |
|
|
|
def on_before_zero_grad(self, optimizer) -> None: |
|
if self.ema_wanted: |
|
self.ema.update(self.model.parameters()) |
|
return super().on_before_zero_grad(optimizer) |
|
|
|
def to(self, *args, **kwargs): |
|
if self.ema_wanted: |
|
self.ema.to(*args, **kwargs) |
|
return super().to(*args, **kwargs) |
|
|
|
|
|
@contextmanager |
|
def maybe_ema(self): |
|
ema = self.ema |
|
ctx = nullcontext if ema is None else ema.average_parameters |
|
yield ctx |
|
|
|
def forward_mmse(self, y): |
|
return self.model(y).clip(0, 1) |
|
|
|
def forward_flow(self, x_t, t, y=None): |
|
if self.hparams.conditional: |
|
if self.mmse_model is not None: |
|
with torch.no_grad(): |
|
self.mmse_model.eval() |
|
condition = self.mmse_model(y).clip(0, 1) |
|
else: |
|
condition = y |
|
x_t = torch.cat((x_t, condition), dim=1) |
|
return self.model(x_t, t) |
|
|
|
def forward(self, x_t, t, y): |
|
if 'flow' in self.hparams.stage: |
|
return self.forward_flow(x_t, t, y) |
|
else: |
|
return self.forward_mmse(y) |
|
|
|
@torch.no_grad() |
|
def create_source_distribution_samples(self, x, y, non_noisy_z0): |
|
with torch.no_grad(): |
|
if self.hparams.conditional: |
|
source_dist_samples = torch.randn_like(x) |
|
else: |
|
if self.hparams.stage == 'flow': |
|
if non_noisy_z0 is None: |
|
self.mmse_model.eval() |
|
non_noisy_z0 = self.mmse_model(y).clip(0, 1) |
|
source_dist_samples = non_noisy_z0 + torch.randn_like(non_noisy_z0) * self.hparams.mmse_noise_std |
|
else: |
|
assert self.hparams.stage == 'naive_flow' |
|
if non_noisy_z0 is not None: |
|
source_dist_samples = non_noisy_z0 |
|
else: |
|
source_dist_samples = y |
|
if source_dist_samples.shape[1] != x.shape[1]: |
|
assert source_dist_samples.shape[1] == 1 |
|
source_dist_samples = source_dist_samples.expand(-1, x.shape[1], -1, -1) |
|
if self.hparams.mmse_noise_std is not None: |
|
source_dist_samples = source_dist_samples + torch.randn_like(source_dist_samples) * self.hparams.mmse_noise_std |
|
return source_dist_samples |
|
|
|
@staticmethod |
|
def stratified_uniform(bs, group=0, groups=1, dtype=None, device=None): |
|
if groups <= 0: |
|
raise ValueError(f"groups must be positive, got {groups}") |
|
if group < 0 or group >= groups: |
|
raise ValueError(f"group must be in [0, {groups})") |
|
n = bs * groups |
|
offsets = torch.arange(group, n, groups, dtype=dtype, device=device) |
|
u = torch.rand(bs, dtype=dtype, device=device) |
|
return ((offsets + u) / n).view(bs, 1, 1, 1) |
|
|
|
def generate_random_t(self, bs, dtype=None): |
|
if self.hparams.t_schedule == 'logit-normal': |
|
return sigmoid(torch.randn(bs, 1, 1, 1, device=self.device)) * (1.0 - self.hparams.eps) + self.hparams.eps |
|
elif self.hparams.t_schedule == 'uniform': |
|
return torch.rand(bs, 1, 1, 1, device=self.device) * (1.0 - self.hparams.eps) + self.hparams.eps |
|
elif self.hparams.t_schedule == 'stratified_uniform': |
|
return self.stratified_uniform(bs, self.trainer.global_rank, self.trainer.world_size, dtype=dtype, |
|
device=self.device) * (1.0 - self.hparams.eps) + self.hparams.eps |
|
else: |
|
raise NotImplementedError() |
|
|
|
def training_step(self, batch, batch_idx): |
|
x = batch['x'] |
|
y = batch['y'] |
|
non_noisy_z0 = batch['non_noisy_z0'] if 'non_noisy_z0' in batch else None |
|
if 'flow' in self.hparams.stage: |
|
with torch.no_grad(): |
|
t = self.generate_random_t(x.shape[0], dtype=x.dtype) |
|
source_dist_samples = self.create_source_distribution_samples(x, y, non_noisy_z0) |
|
x_t = t * x + (1.0 - t) * source_dist_samples |
|
v_t = self(x_t, t.squeeze(), y) |
|
loss = mse_loss(v_t, x - source_dist_samples) |
|
else: |
|
xhat = self(x_t=None, t=None, y=y) |
|
loss = mse_loss(xhat, x) |
|
self.log("train/loss", loss) |
|
return loss |
|
|
|
@torch.no_grad() |
|
def generate_reconstructions(self, x, y, non_noisy_z0, num_flow_steps, result_device): |
|
with self.maybe_ema(): |
|
if 'flow' in self.hparams.stage: |
|
source_dist_samples = self.create_source_distribution_samples(x, y, non_noisy_z0) |
|
|
|
dt = (1.0 / num_flow_steps) * (1.0 - self.hparams.eps) |
|
x_t_next = source_dist_samples.clone() |
|
x_t_seq = [x_t_next] |
|
t_one = torch.ones(x.shape[0], device=self.device) |
|
for i in range(num_flow_steps): |
|
num_t = (i / num_flow_steps) * (1.0 - self.hparams.eps) + self.hparams.eps |
|
v_t_next = self(x_t=x_t_next, t=t_one * num_t, y=y).to(x_t_next.dtype) |
|
x_t_next = x_t_next.clone() + v_t_next * dt |
|
x_t_seq.append(x_t_next.to(result_device)) |
|
|
|
xhat = x_t_seq[-1].clip(0, 1).to(torch.float32) |
|
source_dist_samples = source_dist_samples.to(result_device) |
|
else: |
|
xhat = self(x_t=None, t=None, y=y).to(torch.float32) |
|
x_t_seq = None |
|
source_dist_samples = None |
|
return xhat.to(result_device), x_t_seq, source_dist_samples |
|
|
|
def validation_step(self, batch, batch_idx): |
|
x = batch['x'] |
|
y = batch['y'] |
|
non_noisy_z0 = batch['non_noisy_z0'] if 'non_noisy_z0' in batch else None |
|
xhat, x_t_seq, source_dist_samples = self.generate_reconstructions(x, y, non_noisy_z0, self.hparams.num_flow_steps, |
|
self.device) |
|
x = x.to(torch.float32) |
|
y = y.to(torch.float32) |
|
self.log_dict({"val_metrics/mse": ((x - xhat) ** 2).mean()}, on_step=False, on_epoch=True, sync_dist=True, |
|
batch_size=x.shape[0]) |
|
|
|
if 'flow' in self.hparams.stage: |
|
self.fid.update(x, real=True) |
|
self.fid.update(xhat, real=False) |
|
self.inception_score.update(xhat) |
|
|
|
if batch_idx == 0: |
|
wandb_logger = self.logger.experiment |
|
wandb_logger.log({'val_images/x': [wandb.Image(to_pil_image(create_grid(x)))], |
|
'val_images/y': [wandb.Image(to_pil_image(create_grid(y.clip(0, 1))))], |
|
'val_images/xhat': [wandb.Image(to_pil_image(create_grid(xhat)))], }) |
|
if 'flow' in self.hparams.stage: |
|
wandb_logger.log({'val_images/x_t_seq': [wandb.Image(to_pil_image(create_grid( |
|
torch.cat([elem[0].unsqueeze(0).to(torch.float32) for elem in x_t_seq], dim=0).clip(0, 1), |
|
num_images=len(x_t_seq))))], 'val_images/source_distribution_samples': [ |
|
wandb.Image(to_pil_image(create_grid(source_dist_samples.clip(0, 1).to(torch.float32))))]}) |
|
if self.mmse_model is not None: |
|
xhat_mmse = self.mmse_model(y).clip(0, 1) |
|
wandb_logger.log({'val_images/xhat_mmse': [ |
|
wandb.Image(to_pil_image(create_grid(xhat_mmse.to(torch.float32))))]}) |
|
|
|
def on_validation_epoch_end(self): |
|
if 'flow' in self.hparams.stage: |
|
inception_score_mean, inception_score_std = self.inception_score.compute() |
|
self.log_dict( |
|
{'val_metrics/fid': self.fid.compute(), |
|
'val_metrics/inception_score_mean': inception_score_mean, |
|
'val_metrics/inception_score_std': inception_score_std}, |
|
on_epoch=True, on_step=False, sync_dist=True, |
|
batch_size=1) |
|
self.fid.reset() |
|
self.inception_score.reset() |
|
|
|
def test_step(self, batch, batch_idx): |
|
assert self.test_results_path is not None, "Please set test_results_path before testing." |
|
assert os.path.isdir(self.test_results_path), 'Please make sure the test_result_path dir exists.' |
|
|
|
def save_image_batch(images, folder, image_file_names): |
|
os.makedirs(folder, exist_ok=True) |
|
for i, img in enumerate(images): |
|
save_image(images[i].clip(0, 1), os.path.join(folder, image_file_names[i])) |
|
|
|
os.makedirs(self.test_results_path, exist_ok=True) |
|
x = batch['x'] |
|
y = batch['y'] |
|
non_noisy_z0 = batch['non_noisy_z0'] if 'non_noisy_z0' in batch else None |
|
y_path = os.path.join(self.test_results_path, 'y') |
|
save_image_batch(y, y_path, batch['img_file_name']) |
|
|
|
if 'flow' in self.hparams.stage: |
|
source_dist_samples_to_save = None |
|
|
|
for num_flow_steps in self.num_test_flow_steps: |
|
xhat, x_t_seq, source_dist_samples = self.generate_reconstructions(x, y, non_noisy_z0, num_flow_steps, |
|
torch.device("cpu")) |
|
xhat_path = os.path.join(self.test_results_path, f"num_flow_steps={num_flow_steps}", 'xhat') |
|
save_image_batch(xhat, xhat_path, batch['img_file_name']) |
|
if source_dist_samples_to_save is None: |
|
source_dist_samples_to_save = source_dist_samples |
|
|
|
source_distribution_samples_path = os.path.join(self.test_results_path, 'source_distribution_samples') |
|
save_image_batch(source_dist_samples_to_save, source_distribution_samples_path, batch['img_file_name']) |
|
if self.mmse_model is not None: |
|
mmse_estimates = self.mmse_model(y).clip(0, 1) |
|
mmse_samples_path = os.path.join(self.test_results_path, 'mmse_samples') |
|
save_image_batch(mmse_estimates, mmse_samples_path, batch['img_file_name']) |
|
|
|
|
|
else: |
|
xhat, _, _ = self.generate_reconstructions(x, y, non_noisy_z0, None, torch.device('cpu')) |
|
xhat_path = os.path.join(self.test_results_path, 'xhat') |
|
save_image_batch(xhat, xhat_path, batch['img_file_name']) |
|
|
|
def configure_optimizers(self): |
|
|
|
optimizer = AdamW(self.model.parameters(), |
|
betas=self.hparams.betas, |
|
eps=1e-8, |
|
lr=self.hparams.lr, |
|
weight_decay=self.hparams.weight_decay) |
|
return optimizer |
|
|