ohayonguy
commited on
Commit
·
20ac05d
1
Parent(s):
8d5efa4
trying to fix interface
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import os
|
|
|
2 |
if os.getenv('SPACES_ZERO_GPU') == "true":
|
3 |
os.environ['SPACES_ZERO_GPU'] = "1"
|
4 |
os.environ['K_DIFFUSION_USE_COMPILE'] = "0"
|
@@ -29,7 +30,8 @@ if not os.path.exists(realesr_model_path):
|
|
29 |
# background enhancer with RealESRGAN
|
30 |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
31 |
half = True if torch.cuda.is_available() else False
|
32 |
-
upsampler = RealESRGANer(scale=4, model_path=realesr_model_path, model=model, tile=400, tile_pad=10, pre_pad=0,
|
|
|
33 |
|
34 |
pmrf = MMSERectifiedFlow.from_pretrained('ohayonguy/PMRF_blind_face_image_restoration').to(device=device)
|
35 |
|
@@ -43,8 +45,6 @@ face_helper_dummy = FaceRestoreHelper(
|
|
43 |
device=device,
|
44 |
model_rootpath=None)
|
45 |
|
46 |
-
os.makedirs('output', exist_ok=True)
|
47 |
-
|
48 |
|
49 |
def generate_reconstructions(pmrf_model, x, y, non_noisy_z0, num_flow_steps, device):
|
50 |
source_dist_samples = pmrf_model.create_source_distribution_samples(x, y, non_noisy_z0)
|
@@ -58,6 +58,7 @@ def generate_reconstructions(pmrf_model, x, y, non_noisy_z0, num_flow_steps, dev
|
|
58 |
|
59 |
return x_t_next.clip(0, 1).to(torch.float32)
|
60 |
|
|
|
61 |
@torch.inference_mode()
|
62 |
@spaces.GPU()
|
63 |
def enhance_face(img, face_helper, has_aligned, num_flow_steps, only_center_face=False, paste_back=True, scale=2):
|
@@ -73,21 +74,19 @@ def enhance_face(img, face_helper, has_aligned, num_flow_steps, only_center_face
|
|
73 |
# align and warp each face
|
74 |
face_helper.align_warp_face()
|
75 |
# face restoration
|
76 |
-
for cropped_face in face_helper.cropped_faces:
|
77 |
# prepare data
|
78 |
h, w = cropped_face.shape[0], cropped_face.shape[1]
|
79 |
cropped_face = cv2.resize(cropped_face, (512, 512), interpolation=cv2.INTER_LINEAR)
|
|
|
80 |
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
|
81 |
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
|
82 |
|
83 |
dummy_x = torch.zeros_like(cropped_face_t)
|
84 |
-
# with torch.autocast("cuda", dtype=torch.bfloat16):
|
85 |
output = generate_reconstructions(pmrf, dummy_x, cropped_face_t, None, num_flow_steps, device)
|
86 |
restored_face = tensor2img(output.to(torch.float32).squeeze(0), rgb2bgr=True, min_max=(0, 1))
|
87 |
-
# restored_face = cropped_face
|
88 |
restored_face = cv2.resize(restored_face, (h, w), interpolation=cv2.INTER_LINEAR)
|
89 |
|
90 |
-
|
91 |
restored_face = restored_face.astype('uint8')
|
92 |
face_helper.add_restored_face(restored_face)
|
93 |
|
@@ -124,9 +123,6 @@ def inference(seed, randomize_seed, img, aligned, scale, num_flow_steps):
|
|
124 |
print('Image size too large.')
|
125 |
return None, None
|
126 |
|
127 |
-
if h < 300:
|
128 |
-
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
|
129 |
-
|
130 |
face_helper = FaceRestoreHelper(
|
131 |
scale,
|
132 |
face_size=512,
|
@@ -139,7 +135,8 @@ def inference(seed, randomize_seed, img, aligned, scale, num_flow_steps):
|
|
139 |
|
140 |
has_aligned = True if aligned == 'Yes' else False
|
141 |
cropped_face, restored_aligned, restored_img = enhance_face(img, face_helper, has_aligned, only_center_face=False,
|
142 |
-
|
|
|
143 |
if has_aligned:
|
144 |
output = restored_aligned[0]
|
145 |
input = cropped_face[0].astype('uint8')
|
@@ -147,14 +144,12 @@ def inference(seed, randomize_seed, img, aligned, scale, num_flow_steps):
|
|
147 |
output = restored_img
|
148 |
input = img
|
149 |
|
150 |
-
save_path = f'output/out.png'
|
151 |
-
cv2.imwrite(save_path, output)
|
152 |
-
|
153 |
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
|
154 |
h, w = output.shape[0:2]
|
155 |
input = cv2.cvtColor(input, cv2.COLOR_BGR2RGB)
|
156 |
input = cv2.resize(input, (h, w), interpolation=cv2.INTER_LINEAR)
|
157 |
-
return [
|
|
|
158 |
|
159 |
intro = """
|
160 |
<h1 style="font-weight: 1400; text-align: center; margin-bottom: 7px;">Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration</h1>
|
@@ -166,17 +161,18 @@ intro = """
|
|
166 |
"""
|
167 |
markdown_top = """
|
168 |
Gradio demo for the blind face image restoration version of [Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration](https://arxiv.org/abs/2410.00418).
|
|
|
169 |
|
170 |
Please refer to our project's page for more details: https://pmrf-ml.github.io/.
|
171 |
|
172 |
---
|
173 |
|
174 |
-
You may use this demo to enhance the quality of any image which contains faces.
|
175 |
-
|
176 |
*Notes* :
|
177 |
|
178 |
1. Our model is designed to restore aligned face images, but here we incorporate mechanisms that allow restoring the quality of any image that contains any number of faces. Thus, the resulting quality of such general images is not guaranteed.
|
179 |
2. Images that are too large won't work due to memory constraints.
|
|
|
|
|
180 |
"""
|
181 |
|
182 |
article = r"""
|
@@ -186,7 +182,6 @@ If you find our work useful, please help to ⭐ our <a href='https://github.com/
|
|
186 |
|
187 |
📝 **Citation**
|
188 |
|
189 |
-
If our work is useful for your research, please consider citing:
|
190 |
```bibtex
|
191 |
@article{ohayon2024pmrf,
|
192 |
author = {Guy Ohayon and Tomer Michaeli and Michael Elad},
|
@@ -214,15 +209,10 @@ css = """
|
|
214 |
}
|
215 |
"""
|
216 |
|
217 |
-
|
218 |
-
|
219 |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
220 |
gr.HTML(intro)
|
221 |
gr.Markdown(markdown_top)
|
222 |
|
223 |
-
with gr.Row():
|
224 |
-
run_button = gr.Button(value="Submit", variant="primary")
|
225 |
-
|
226 |
with gr.Row():
|
227 |
with gr.Column(scale=2):
|
228 |
input_im = gr.Image(label="Input Image", type="filepath")
|
@@ -250,54 +240,13 @@ with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
|
250 |
)
|
251 |
|
252 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
253 |
-
aligned = gr.Checkbox(label="The input is an aligned face image", value=
|
254 |
|
255 |
with gr.Row():
|
256 |
-
|
|
|
257 |
with gr.Row():
|
258 |
-
|
259 |
-
|
260 |
-
# examples = gr.Examples(
|
261 |
-
# examples=[
|
262 |
-
# # [42, False, "examples/image_1.jpg", 28, 4, 0.6],
|
263 |
-
# # [42, False, "examples/image_2.jpg", 28, 4, 0.6],
|
264 |
-
# # [42, False, "examples/image_3.jpg", 28, 4, 0.6],
|
265 |
-
# # [42, False, "examples/image_4.jpg", 28, 4, 0.6],
|
266 |
-
# # [42, False, "examples/image_5.jpg", 28, 4, 0.6],
|
267 |
-
# # [42, False, "examples/image_6.jpg", 28, 4, 0.6],
|
268 |
-
# ],
|
269 |
-
# inputs=[
|
270 |
-
# seed,
|
271 |
-
# randomize_seed,
|
272 |
-
# input_im,
|
273 |
-
# num_inference_steps,
|
274 |
-
# upscale_factor,
|
275 |
-
# controlnet_conditioning_scale,
|
276 |
-
# ],
|
277 |
-
# fn=infer,
|
278 |
-
# outputs=result,
|
279 |
-
# cache_examples="lazy",
|
280 |
-
# )
|
281 |
-
|
282 |
-
# examples = gr.Examples(
|
283 |
-
# examples=[
|
284 |
-
# #[42, False, "examples/image_1.jpg", 28, 4, 0.6],
|
285 |
-
# [42, False, "examples/image_2.jpg", 28, 4, 0.6],
|
286 |
-
# #[42, False, "examples/image_3.jpg", 28, 4, 0.6],
|
287 |
-
# #[42, False, "examples/image_4.jpg", 28, 4, 0.6],
|
288 |
-
# [42, False, "examples/image_5.jpg", 28, 4, 0.6],
|
289 |
-
# [42, False, "examples/image_6.jpg", 28, 4, 0.6],
|
290 |
-
# [42, False, "examples/image_7.jpg", 28, 4, 0.6],
|
291 |
-
# ],
|
292 |
-
# inputs=[
|
293 |
-
# seed,
|
294 |
-
# randomize_seed,
|
295 |
-
# input_im,
|
296 |
-
# num_inference_steps,
|
297 |
-
# upscale_factor,
|
298 |
-
# controlnet_conditioning_scale,
|
299 |
-
# ],
|
300 |
-
# )
|
301 |
|
302 |
gr.Markdown(article)
|
303 |
gr.on(
|
@@ -311,27 +260,10 @@ with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
|
311 |
upscale_factor,
|
312 |
num_inference_steps,
|
313 |
],
|
314 |
-
outputs=
|
315 |
show_api=False,
|
316 |
# show_progress="minimal",
|
317 |
)
|
318 |
|
319 |
-
|
320 |
-
# demo = gr.Interface(
|
321 |
-
# inference, [
|
322 |
-
# gr.Image(type="filepath", label="Input"),
|
323 |
-
# gr.Radio(['Yes', 'No'], type="value", value='aligned', label='Is the input an aligned face image?'),
|
324 |
-
# gr.Slider(label="Scale factor for the background upsampler. Applicable only to non-aligned face images.", minimum=1, maximum=4, value=2, step=0.1, interactive=True),
|
325 |
-
# gr.Number(label="Number of flow steps. A higher value should result in better image quality, but will inference will take a longer time.", value=25),
|
326 |
-
# ], [
|
327 |
-
# gr.ImageSlider(type="numpy", label="Input / Output", interactive=True),
|
328 |
-
# gr.File(label="Download the output image")
|
329 |
-
# ],
|
330 |
-
# title=title,
|
331 |
-
# description=description,
|
332 |
-
# article=article,
|
333 |
-
# )
|
334 |
-
|
335 |
-
|
336 |
demo.queue()
|
337 |
-
demo.launch(state_session_capacity=15, show_api=False
|
|
|
1 |
import os
|
2 |
+
|
3 |
if os.getenv('SPACES_ZERO_GPU') == "true":
|
4 |
os.environ['SPACES_ZERO_GPU'] = "1"
|
5 |
os.environ['K_DIFFUSION_USE_COMPILE'] = "0"
|
|
|
30 |
# background enhancer with RealESRGAN
|
31 |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
32 |
half = True if torch.cuda.is_available() else False
|
33 |
+
upsampler = RealESRGANer(scale=4, model_path=realesr_model_path, model=model, tile=400, tile_pad=10, pre_pad=0,
|
34 |
+
half=half)
|
35 |
|
36 |
pmrf = MMSERectifiedFlow.from_pretrained('ohayonguy/PMRF_blind_face_image_restoration').to(device=device)
|
37 |
|
|
|
45 |
device=device,
|
46 |
model_rootpath=None)
|
47 |
|
|
|
|
|
48 |
|
49 |
def generate_reconstructions(pmrf_model, x, y, non_noisy_z0, num_flow_steps, device):
|
50 |
source_dist_samples = pmrf_model.create_source_distribution_samples(x, y, non_noisy_z0)
|
|
|
58 |
|
59 |
return x_t_next.clip(0, 1).to(torch.float32)
|
60 |
|
61 |
+
|
62 |
@torch.inference_mode()
|
63 |
@spaces.GPU()
|
64 |
def enhance_face(img, face_helper, has_aligned, num_flow_steps, only_center_face=False, paste_back=True, scale=2):
|
|
|
74 |
# align and warp each face
|
75 |
face_helper.align_warp_face()
|
76 |
# face restoration
|
77 |
+
for i, cropped_face in enumerate(face_helper.cropped_faces):
|
78 |
# prepare data
|
79 |
h, w = cropped_face.shape[0], cropped_face.shape[1]
|
80 |
cropped_face = cv2.resize(cropped_face, (512, 512), interpolation=cv2.INTER_LINEAR)
|
81 |
+
face_helper.cropped_faces[i] = cropped_face
|
82 |
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
|
83 |
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
|
84 |
|
85 |
dummy_x = torch.zeros_like(cropped_face_t)
|
|
|
86 |
output = generate_reconstructions(pmrf, dummy_x, cropped_face_t, None, num_flow_steps, device)
|
87 |
restored_face = tensor2img(output.to(torch.float32).squeeze(0), rgb2bgr=True, min_max=(0, 1))
|
|
|
88 |
restored_face = cv2.resize(restored_face, (h, w), interpolation=cv2.INTER_LINEAR)
|
89 |
|
|
|
90 |
restored_face = restored_face.astype('uint8')
|
91 |
face_helper.add_restored_face(restored_face)
|
92 |
|
|
|
123 |
print('Image size too large.')
|
124 |
return None, None
|
125 |
|
|
|
|
|
|
|
126 |
face_helper = FaceRestoreHelper(
|
127 |
scale,
|
128 |
face_size=512,
|
|
|
135 |
|
136 |
has_aligned = True if aligned == 'Yes' else False
|
137 |
cropped_face, restored_aligned, restored_img = enhance_face(img, face_helper, has_aligned, only_center_face=False,
|
138 |
+
paste_back=True, num_flow_steps=num_flow_steps,
|
139 |
+
scale=scale)
|
140 |
if has_aligned:
|
141 |
output = restored_aligned[0]
|
142 |
input = cropped_face[0].astype('uint8')
|
|
|
144 |
output = restored_img
|
145 |
input = img
|
146 |
|
|
|
|
|
|
|
147 |
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
|
148 |
h, w = output.shape[0:2]
|
149 |
input = cv2.cvtColor(input, cv2.COLOR_BGR2RGB)
|
150 |
input = cv2.resize(input, (h, w), interpolation=cv2.INTER_LINEAR)
|
151 |
+
return [input, output, seed]
|
152 |
+
|
153 |
|
154 |
intro = """
|
155 |
<h1 style="font-weight: 1400; text-align: center; margin-bottom: 7px;">Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration</h1>
|
|
|
161 |
"""
|
162 |
markdown_top = """
|
163 |
Gradio demo for the blind face image restoration version of [Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration](https://arxiv.org/abs/2410.00418).
|
164 |
+
You may use this demo to enhance the quality of any image which contains faces.
|
165 |
|
166 |
Please refer to our project's page for more details: https://pmrf-ml.github.io/.
|
167 |
|
168 |
---
|
169 |
|
|
|
|
|
170 |
*Notes* :
|
171 |
|
172 |
1. Our model is designed to restore aligned face images, but here we incorporate mechanisms that allow restoring the quality of any image that contains any number of faces. Thus, the resulting quality of such general images is not guaranteed.
|
173 |
2. Images that are too large won't work due to memory constraints.
|
174 |
+
|
175 |
+
---
|
176 |
"""
|
177 |
|
178 |
article = r"""
|
|
|
182 |
|
183 |
📝 **Citation**
|
184 |
|
|
|
185 |
```bibtex
|
186 |
@article{ohayon2024pmrf,
|
187 |
author = {Guy Ohayon and Tomer Michaeli and Michael Elad},
|
|
|
209 |
}
|
210 |
"""
|
211 |
|
|
|
|
|
212 |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
213 |
gr.HTML(intro)
|
214 |
gr.Markdown(markdown_top)
|
215 |
|
|
|
|
|
|
|
216 |
with gr.Row():
|
217 |
with gr.Column(scale=2):
|
218 |
input_im = gr.Image(label="Input Image", type="filepath")
|
|
|
240 |
)
|
241 |
|
242 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
243 |
+
aligned = gr.Checkbox(label="The input is an aligned face image", value=False)
|
244 |
|
245 |
with gr.Row():
|
246 |
+
run_button = gr.Button(value="Submit", variant="primary")
|
247 |
+
|
248 |
with gr.Row():
|
249 |
+
result = ImageSlider(label="Input / Output", type="numpy", interactive=True, show_label=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
|
251 |
gr.Markdown(article)
|
252 |
gr.on(
|
|
|
260 |
upscale_factor,
|
261 |
num_inference_steps,
|
262 |
],
|
263 |
+
outputs=result,
|
264 |
show_api=False,
|
265 |
# show_progress="minimal",
|
266 |
)
|
267 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
demo.queue()
|
269 |
+
demo.launch(state_session_capacity=15, show_api=False)
|