Spaces:
doevent
/
Running on Zero

ohayonguy commited on
Commit
3dc9cef
·
1 Parent(s): 3b1fe09

fixing sizes

Browse files
Files changed (1) hide show
  1. app.py +7 -3
app.py CHANGED
@@ -66,7 +66,7 @@ def enhance_face(img, face_helper, has_aligned, num_flow_steps, only_center_face
66
  face_helper.cropped_faces = [img]
67
  else:
68
  face_helper.read_image(img)
69
- face_helper.get_face_landmarks_5(only_center_face=only_center_face, resize=640, eye_dist_threshold=5)
70
  # eye_dist_threshold=5: skip faces whose eye distance is smaller than 5 pixels
71
  # TODO: even with eye_dist_threshold, it will still introduce wrong detections and restorations.
72
  # align and warp each face
@@ -74,14 +74,18 @@ def enhance_face(img, face_helper, has_aligned, num_flow_steps, only_center_face
74
  # face restoration
75
  for cropped_face in face_helper.cropped_faces:
76
  # prepare data
 
 
77
  cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
78
  cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
79
 
80
  dummy_x = torch.zeros_like(cropped_face_t)
81
- with torch.autocast("cuda", dtype=torch.bfloat16):
82
- output = generate_reconstructions(pmrf, dummy_x, cropped_face_t, None, num_flow_steps, device)
83
  restored_face = tensor2img(output.to(torch.float32).squeeze(0), rgb2bgr=True, min_max=(0, 1))
84
  # restored_face = cropped_face
 
 
85
 
86
  restored_face = restored_face.astype('uint8')
87
  face_helper.add_restored_face(restored_face)
 
66
  face_helper.cropped_faces = [img]
67
  else:
68
  face_helper.read_image(img)
69
+ face_helper.get_face_landmarks_5(only_center_face=only_center_face, eye_dist_threshold=5)
70
  # eye_dist_threshold=5: skip faces whose eye distance is smaller than 5 pixels
71
  # TODO: even with eye_dist_threshold, it will still introduce wrong detections and restorations.
72
  # align and warp each face
 
74
  # face restoration
75
  for cropped_face in face_helper.cropped_faces:
76
  # prepare data
77
+ h, w = cropped_face.shape[0], cropped_face.shape[1]
78
+ cropped_face = cv2.resize(cropped_face, (512, 512), interpolation=cv2.INTER_LINEAR)
79
  cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
80
  cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
81
 
82
  dummy_x = torch.zeros_like(cropped_face_t)
83
+ # with torch.autocast("cuda", dtype=torch.bfloat16):
84
+ output = generate_reconstructions(pmrf, dummy_x, cropped_face_t, None, num_flow_steps, device)
85
  restored_face = tensor2img(output.to(torch.float32).squeeze(0), rgb2bgr=True, min_max=(0, 1))
86
  # restored_face = cropped_face
87
+ restored_face = cv2.resize(restored_face, (h, w), interpolation=cv2.INTER_LINEAR)
88
+
89
 
90
  restored_face = restored_face.astype('uint8')
91
  face_helper.add_restored_face(restored_face)