from torch.nn import Identity from einops import rearrange def exist(item): return item is not None def set_default_item(condition, item_1, item_2=None): if condition: return item_1 else: return item_2 def set_default_layer(condition, layer_1, args_1=[], kwargs_1={}, layer_2=Identity, args_2=[], kwargs_2={}): if condition: return layer_1(*args_1, **kwargs_1) else: return layer_2(*args_2, **kwargs_2) def get_tensor_items(x, pos, broadcast_shape): device = pos.device bs = pos.shape[0] ndims = len(broadcast_shape[1:]) x = x.cpu()[pos.cpu()] return x.reshape(bs, *((1,) * ndims)).to(device) def local_patching(x, height, width, group_size): if group_size > 0: x = rearrange( x, 'b c (h g1) (w g2) -> b (h w) (g1 g2) c', h=height//group_size, w=width//group_size, g1=group_size, g2=group_size ) else: x = rearrange(x, 'b c h w -> b (h w) c', h=height, w=width) return x def local_merge(x, height, width, group_size): if group_size > 0: x = rearrange( x, 'b (h w) (g1 g2) c -> b c (h g1) (w g2)', h=height//group_size, w=width//group_size, g1=group_size, g2=group_size ) else: x = rearrange(x, 'b (h w) c -> b c h w', h=height, w=width) return x def global_patching(x, height, width, group_size): x = local_patching(x, height, width, height//group_size) x = x.transpose(-2, -3) return x def global_merge(x, height, width, group_size): x = x.transpose(-2, -3) x = local_merge(x, height, width, height//group_size) return x