import math import torch from torch import nn, einsum from einops import rearrange, repeat from .utils import exist, set_default_layer class Identity(nn.Module): def __init__(self, *args, **kwargs): super().__init__() @staticmethod def forward(x, *args, **kwargs): return x class SinusoidalPosEmb_sr(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def forward(self, x): half_dim = self.dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, device=x.device) * -emb) emb = rearrange(x, 'i -> i 1') * rearrange(emb, 'j -> 1 j').to(dtype=x.dtype) return torch.cat((emb.sin(), emb.cos()), dim=-1) class UpDownResolution(nn.Module): def __init__(self, num_channels, up_resolution, change_type='conv'): super().__init__() if change_type == 'pooling': self.change_resolution = set_default_layer( up_resolution, layer_1=nn.Upsample, kwargs_1={'scale_factor': 2., 'mode': 'nearest'}, layer_2=nn.AvgPool2d, kwargs_2={'kernel_size': 2, 'stride': 2} ) elif change_type == 'conv': self.change_resolution = set_default_layer( up_resolution, nn.ConvTranspose2d, (num_channels, num_channels), {'kernel_size': 4, 'stride': 2, 'padding': 1}, nn.Conv2d, (num_channels, num_channels), {'kernel_size': 4, 'stride': 2, 'padding': 1}, ) else: raise NotImplementedError def forward(self, x): x = self.change_resolution(x) return x class SinusoidalPosEmb(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def forward(self, x): half_dim = self.dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, device=x.device, dtype=x.dtype) * -emb) emb = rearrange(x, 'i -> i 1') * rearrange(emb, 'j -> 1 j') return torch.cat((emb.sin(), emb.cos()), dim=-1) class ConditionalGroupNorm(nn.Module): def __init__(self, groups, normalized_shape, context_dim): super().__init__() self.norm = nn.GroupNorm(groups, normalized_shape, affine=False) self.context_mlp = nn.Sequential( nn.SiLU(), nn.Linear(context_dim, 2 * normalized_shape) ) self.context_mlp[1].weight.data.zero_() self.context_mlp[1].bias.data.zero_() def forward(self, x, context): context = self.context_mlp(context) ndims = ' 1' * len(x.shape[2:]) context = rearrange(context, f'b c -> b c{ndims}') scale, shift = context.chunk(2, dim=1) x = self.norm(x) * (scale + 1.) + shift return x class Attention(nn.Module): def __init__(self, in_channels, out_channels, context_dim, head_dim=64): super().__init__() assert out_channels % head_dim == 0 self.num_heads = out_channels // head_dim self.scale = head_dim ** -0.5 self.to_query = nn.Linear(in_channels, out_channels, bias=False) self.to_key = nn.Linear(context_dim, out_channels, bias=False) self.to_value = nn.Linear(context_dim, out_channels, bias=False) self.output_layer = nn.Linear(out_channels, out_channels, bias=False) def forward(self, x, context, context_mask=None): query = rearrange(self.to_query(x), 'b n (h d) -> b h n d', h=self.num_heads) key = rearrange(self.to_key(context), 'b n (h d) -> b h n d', h=self.num_heads) value = rearrange(self.to_value(context), 'b n (h d) -> b h n d', h=self.num_heads) attention_matrix = einsum('b h i d, b h j d -> b h i j', query, key) * self.scale if exist(context_mask): max_neg_value = -torch.finfo(attention_matrix.dtype).max context_mask = rearrange(context_mask, 'b j -> b 1 1 j') attention_matrix = attention_matrix.masked_fill(~context_mask, max_neg_value) attention_matrix = attention_matrix.softmax(dim=-1) out = einsum('b h i j, b h j d -> b h i d', attention_matrix, value) out = rearrange(out, 'b h n d -> b n (h d)') out = self.output_layer(out) return out