from transformers import pipeline, set_seed import gradio as grad import random gpt2_pipe = pipeline('text-generation', model='succinctly/text2image-prompt-generator') def generate(starting_text): seed = random.randint(1, 100000) set_seed(seed) response = gpt2_pipe(starting_text, max_length=30, num_return_sequences=random.randint(5, 15)) response_list = [] for x in response: if x['generated_text'].strip() != starting_text: response_list.append(x['generated_text']) response_end = "\n".join(response_list) return response_end txt = grad.Textbox(lines=1, label="English", placeholder="English Text here") out = grad.Textbox(lines=5, label="Generated Text") grad.Interface(fn=generate, inputs=txt, outputs=out, allow_flagging='never', cache_examples=False, theme="default").launch(enable_queue=True, debug=True)