from transformers import AutoModelForCausalLM, AutoTokenizer import gradio as gr # Charger le modèle model_name = "soynade-research/Oolel-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto") # Fonction pour générer une réponse def generate_response(user_input, max_new_tokens=150, temperature=0.7): inputs = tokenizer(user_input, return_tensors="pt").to("cuda") outputs = model.generate(inputs.input_ids, max_new_tokens=max_new_tokens, temperature=temperature) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Interface Gradio iface = gr.Interface( fn=generate_response, inputs=[gr.Textbox(label="Message utilisateur"), gr.Slider(50, 500, value=150, label="Nombre max de tokens")], outputs="text", title="Oolel Chatbot" ) iface.launch()