# Fichier app.py import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Configuration du modèle device = "cuda" if torch.cuda.is_available() else "cpu" model = AutoModelForCausalLM.from_pretrained( "soynade-research/Oolel-v0.1", torch_dtype=torch.bfloat16, device_map="auto" if torch.cuda.is_available() else None ) tokenizer = AutoTokenizer.from_pretrained("soynade-research/Oolel-v0.1") def generate_response(messages, max_new_tokens=1024, temperature=0.1): text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=max_new_tokens, temperature=temperature ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return response # Configuration de l'interface Gradio def chat_interface(message, history): # Convertir l'historique de Gradio au format requis par le modèle formatted_history = [ {"role": "user" if idx % 2 == 0 else "assistant", "content": msg} for idx, msg in enumerate(sum(history, [])) ] # Ajouter le nouveau message formatted_history.append({"role": "user", "content": message}) # Générer la réponse response = generate_response(formatted_history) return response # Créer l'interface Gradio iface = gr.ChatInterface( fn=chat_interface, title="Chat avec Oolel", description="Conversez avec le modèle Oolel", ) if __name__ == "__main__": iface.launch()