dogeplusplus commited on
Commit
c8cd80b
·
1 Parent(s): f161731

Update app and add example model.

Browse files

Former-commit-id: 085f19cad30345560d5f3c64021c448deafbd470

Makefile CHANGED
@@ -4,7 +4,7 @@ model-server: style
4
  docker run --gpus all -p 8500:8500 --mount type=bind,source=${CURRENT_DIR}/style,target=/models/style -e MODEL_NAME=style -t tensorflow/serving:latest-gpu
5
 
6
  model-server-cpu: style
7
- docker run -p 8500:8500 --mount type=bind,source=${CURRENT_DIR}/style,target=/models/style -e MODEL_NAME=style -t tensorflow/serving
8
 
9
  app:
10
  exec streamlit run streamlit_app.py
 
4
  docker run --gpus all -p 8500:8500 --mount type=bind,source=${CURRENT_DIR}/style,target=/models/style -e MODEL_NAME=style -t tensorflow/serving:latest-gpu
5
 
6
  model-server-cpu: style
7
+ docker run -p 8500:8500 --mount type=bind,source=${CURRENT_DIR}/style,target=/models/style -e MODEL_NAME=style -t tensorflow/serving:2.4.0
8
 
9
  app:
10
  exec streamlit run streamlit_app.py
client.py CHANGED
@@ -1,27 +1,34 @@
1
  import cv2
2
  import grpc
3
  import tensorflow as tf
 
4
  import numpy as np
5
  from tensorflow_serving.apis import predict_pb2, prediction_service_pb2_grpc
6
 
 
 
7
  def style_transfer_serving(stub, content, style, resize=None):
8
- content = np.array(content, dtype=np.float32)
9
- style = np.array(style, dtype=np.float32)
10
 
11
  if resize:
12
  content = cv2.resize(content, (512, 512))
13
  style = cv2.resize(style, (512, 512))
14
 
 
15
  image_proto = tf.make_tensor_proto(content[np.newaxis, ...] / 255.)
16
  style_proto = tf.make_tensor_proto(style[np.newaxis, ...] / 255.)
17
 
18
- request = predict_pb2.PredictRequest()
19
- request.model_spec.name = 'style'
20
- request.model_spec.signature_name = 'serving_default'
21
- request.inputs['placeholder'].CopyFrom(image_proto)
22
- request.inputs['placeholder_1'].CopyFrom(style_proto)
23
- resp = stub.Predict(request)
24
- stylized_image = tf.make_ndarray(resp.outputs['output_0'])[0]
 
 
 
25
  return stylized_image
26
 
27
  if __name__ == "__main__":
@@ -29,14 +36,17 @@ if __name__ == "__main__":
29
  ('grpc.max_send_message_length', 200 * 1024 * 1024),
30
  ('grpc.max_receive_message_length', 200 * 1024 * 1024)
31
  ]
32
- channel = grpc.insecure_channel('localhost:8500', options=options)
33
- stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
34
- request = predict_pb2.PredictRequest()
35
 
36
- file = tf.io.read_file('/home/albert/Downloads/pebbles.jpg')
37
  style = tf.io.decode_image(file)
38
 
39
- file = tf.io.read_file('/home/albert/Downloads/sam_and_nyx/sam_faces/sam_kitchen.jpg')
40
  content = tf.io.decode_image(file)
41
 
42
- style_transfer_serving(stub, content, style)
 
 
 
 
 
1
  import cv2
2
  import grpc
3
  import tensorflow as tf
4
+ import tensorflow_hub as hub
5
  import numpy as np
6
  from tensorflow_serving.apis import predict_pb2, prediction_service_pb2_grpc
7
 
8
+ hub_module = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2')
9
+
10
  def style_transfer_serving(stub, content, style, resize=None):
11
+ content = np.array(content, dtype=np.float32) / 255.
12
+ style = np.array(style, dtype=np.float32) / 255.
13
 
14
  if resize:
15
  content = cv2.resize(content, (512, 512))
16
  style = cv2.resize(style, (512, 512))
17
 
18
+
19
  image_proto = tf.make_tensor_proto(content[np.newaxis, ...] / 255.)
20
  style_proto = tf.make_tensor_proto(style[np.newaxis, ...] / 255.)
21
 
22
+ stylized_image = hub_module(tf.constant(content[np.newaxis, ...]), tf.constant(style[np.newaxis, ...]))
23
+ # request = predict_pb2.PredictRequest()
24
+ # request.model_spec.name = 'style'
25
+ # request.inputs['placeholder'].CopyFrom(image_proto)
26
+ # request.inputs['placeholder_1'].CopyFrom(style_proto)
27
+ # resp = stub.Predict(request)
28
+ # stylized_image = tf.make_ndarray(resp.outputs['output_0'])[0]
29
+ stylized_image = stylized_image[0] * 255
30
+ stylized_image = np.array(stylized_image, dtype=np.uint8)
31
+ stylized_image = stylized_image
32
  return stylized_image
33
 
34
  if __name__ == "__main__":
 
36
  ('grpc.max_send_message_length', 200 * 1024 * 1024),
37
  ('grpc.max_receive_message_length', 200 * 1024 * 1024)
38
  ]
39
+ # channel = grpc.insecure_channel('localhost:8500', options=options)
40
+ # stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
 
41
 
42
+ file = tf.io.read_file('/home/albert/github/neural-style/assets/template_styles/pebbles.jpg')
43
  style = tf.io.decode_image(file)
44
 
45
+ file = tf.io.read_file('/home/albert/Downloads/sam_and_nyx/sam_stairs.jpeg')
46
  content = tf.io.decode_image(file)
47
 
48
+ stub = None
49
+ result = style_transfer_serving(stub, content, style)
50
+ import matplotlib.pyplot as plt
51
+ plt.imshow(result[0])
52
+ plt.show()
setup.py CHANGED
@@ -6,11 +6,11 @@ setup(
6
  packages=[],
7
  install_requires=[
8
  'opencv-python==4.4.0.46',
9
- 'tensorflow==2.3.0',
10
  'streamlit==0.70.0',
11
- 'numpy==1.19.4',
12
- 'grpcio==1.33.2',
13
- 'tensorflow-serving-api==2.3.0',
14
 
15
  ],
16
  url='',
 
6
  packages=[],
7
  install_requires=[
8
  'opencv-python==4.4.0.46',
9
+ 'tensorflow==2.4.1',
10
  'streamlit==0.70.0',
11
+ 'numpy==1.19.5',
12
+ 'grpcio==1.32.0',
13
+ 'tensorflow-serving-api==2.4.1',
14
 
15
  ],
16
  url='',
streamlit_app.py CHANGED
@@ -21,12 +21,11 @@ def main():
21
  style_file = st.sidebar.file_uploader('Upload Style', type=['jpg', 'jpeg', 'png'])
22
  style_options = st.sidebar.selectbox(label='Example Styles', options=os.listdir('assets/template_styles'))
23
  col1.subheader('Content Image')
24
- col2.subheader('Style Image')
 
25
  show_image = col1.empty()
26
  show_style = col2.empty()
27
 
28
- st.subheader('Style Transfer')
29
- show_transfer = st.empty()
30
 
31
  style = None
32
  content = None
@@ -37,18 +36,18 @@ def main():
37
 
38
  if style_file:
39
  style = style_file.getvalue()
40
- show_style.image(style, use_column_width=True)
41
  elif style_options is not None:
42
  with open(os.path.join('assets/template_styles', style_options), 'rb') as f:
43
  style = f.read()
44
- show_style.image(style, use_column_width=True)
45
 
46
  if content is not None and style is not None:
47
  content_image = tf.io.decode_image(content)
48
  style_image = tf.image.resize(tf.io.decode_image(style), (256, 256))
49
  with st.spinner('Generating style transfer...'):
50
  style_transfer = style_transfer_serving(stub, content_image, style_image)
51
- show_transfer.image(style_transfer, use_column_width=True)
52
 
53
 
54
  if __name__ == "__main__":
 
21
  style_file = st.sidebar.file_uploader('Upload Style', type=['jpg', 'jpeg', 'png'])
22
  style_options = st.sidebar.selectbox(label='Example Styles', options=os.listdir('assets/template_styles'))
23
  col1.subheader('Content Image')
24
+ col2.subheader('Style Transfer')
25
+ st.sidebar.subheader('Style Image')
26
  show_image = col1.empty()
27
  show_style = col2.empty()
28
 
 
 
29
 
30
  style = None
31
  content = None
 
36
 
37
  if style_file:
38
  style = style_file.getvalue()
39
+ st.sidebar.image(style, use_column_width=True)
40
  elif style_options is not None:
41
  with open(os.path.join('assets/template_styles', style_options), 'rb') as f:
42
  style = f.read()
43
+ st.sidebar.image(style, use_column_width=True)
44
 
45
  if content is not None and style is not None:
46
  content_image = tf.io.decode_image(content)
47
  style_image = tf.image.resize(tf.io.decode_image(style), (256, 256))
48
  with st.spinner('Generating style transfer...'):
49
  style_transfer = style_transfer_serving(stub, content_image, style_image)
50
+ show_style.image(style_transfer, use_column_width=True)
51
 
52
 
53
  if __name__ == "__main__":
style/1/saved_model.pb ADDED
Binary file (1.73 MB). View file
 
style/1/variables/variables.data-00000-of-00001.REMOVED.git-id ADDED
@@ -0,0 +1 @@
 
 
1
+ 32c1044a28bd76fc7aec2d67c9bfb365b351422e
style/1/variables/variables.index ADDED
Binary file (30.2 kB). View file