dogutcu commited on
Commit
19a5c6d
·
verified ·
1 Parent(s): 4a9f2db

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -2
app.py CHANGED
@@ -1,5 +1,7 @@
1
  import gradio as gr
2
  from sentence_transformers import SentenceTransformer, util
 
 
3
  import openai
4
  import os
5
 
@@ -60,10 +62,16 @@ def find_relevant_segment(user_query, segments):
60
 
61
  def generate_response(user_query, relevant_segment):
62
  """
63
- Generate a response emphasizing the bot's capability in providing information related to composting food.
64
  """
 
 
 
 
 
 
65
  try:
66
- system_message = "You are a chess chatbot specialized in providing information about food composting tips, tricks, and basics."
67
  user_message = f"Here's the information on composting: {relevant_segment}"
68
  messages = [
69
  {"role": "system", "content": system_message},
@@ -83,6 +91,8 @@ def generate_response(user_query, relevant_segment):
83
  print(f"Error in generating response: {e}")
84
  return f"Error in generating response: {e}"
85
 
 
 
86
  def query_model(question):
87
  """
88
  Process a question, find relevant information, and generate a response.
 
1
  import gradio as gr
2
  from sentence_transformers import SentenceTransformer, util
3
+ import transformers
4
+ from transformers import pipeline
5
  import openai
6
  import os
7
 
 
62
 
63
  def generate_response(user_query, relevant_segment):
64
  """
65
+ Generate a response emphasizing the bot's capability to provide information related to composting food.
66
  """
67
+ generator = pipeline("text-davinci-003", device=0)
68
+ response = generator(query=f"Here's the information on composting: {relevant_segment} {user_query}", max_length=150, temperature=0.2, top_p=1)
69
+ generated_text = response[0]['generated_text'].strip()
70
+ confidence_score = response[0]['score']
71
+
72
+ return generated_text, confidence_score
73
  try:
74
+ system_message = "You are a chatbot specialized in providing information about food composting tips, tricks, and basics."
75
  user_message = f"Here's the information on composting: {relevant_segment}"
76
  messages = [
77
  {"role": "system", "content": system_message},
 
91
  print(f"Error in generating response: {e}")
92
  return f"Error in generating response: {e}"
93
 
94
+
95
+
96
  def query_model(question):
97
  """
98
  Process a question, find relevant information, and generate a response.