dogutcu commited on
Commit
5d64b2b
·
verified ·
1 Parent(s): 3da86fb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -63
app.py CHANGED
@@ -66,68 +66,6 @@ def generate_response(user_query, relevant_segment):
66
  Generate a response emphasizing the bot's capability to provide information related to composting food.
67
  """
68
 
69
- classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
70
-
71
- try:
72
- # Define the messages
73
- system_message = "You are a chatbot specialized in providing information about food composting tips, tricks, and basics."
74
- user_message = f"Here's the information on composting: {relevant_segment} {user_query}"
75
- messages = [
76
- {"role": "system", "content": system_message},
77
- {"role": "user", "content": user_message}
78
- ]
79
-
80
- # Generate the response using gpt-3.5-turbo-instruct
81
- response = openai.ChatCompletion.create(
82
- model="gpt-4o",
83
- messages=messages,
84
- max_tokens=300,
85
- temperature=0.5,
86
- top_p=1
87
- frequency_penalty=0.5,
88
- presence_penalty=0.5
89
- )
90
-
91
- # Extract the generated text
92
- generated_text = response['choices'][0]['message']['content'].strip()
93
-
94
- return generated_text
95
-
96
- except Exception as e:
97
- print(f"Error in generating response: {e}")
98
- return f"Error in generating response: {e}"
99
-
100
-
101
- # Function to classify the generated response and get confidence scores
102
- def classify_response(response_text, candidate_labels=["food composting", "other"]):
103
- try:
104
- # Perform classification
105
- response = classifier(
106
- sequences=response_text,
107
- candidate_labels=candidate_labels
108
- )
109
-
110
- # Extract the confidence score for the most likely label
111
- confidence_score = response['scores'][0] # Confidence score for the most likely label
112
-
113
- return confidence_score
114
-
115
- except Exception as e:
116
- print(f"Error in classifying response: {e}")
117
- return f"Error in classifying response: {e}"
118
-
119
- # Example usage
120
- openai.api_key = 'sk-proj-X437DVJaksFxSGcGBcuzT3BlbkFJBcQkP2utlrZg09UMRIIZ'
121
- user_query = "How to compost food scraps?"
122
- relevant_segment = "Food composting involves..."
123
- generated_response = generate_response(user_query, relevant_segment)
124
-
125
- if generated_response:
126
- confidence_score = classify_response(generated_response)
127
- print(f"Generated Response: {generated_response}")
128
- print(f"Confidence Score: {confidence_score}")
129
-
130
- '''
131
  try:
132
  system_message = "You are a chatbot specialized in providing information about food composting tips, tricks, and basics."
133
  user_message = f"Here's the information on composting: {relevant_segment}"
@@ -148,7 +86,6 @@ if generated_response:
148
  except Exception as e:
149
  print(f"Error in generating response: {e}")
150
  return f"Error in generating response: {e}"
151
- '''
152
 
153
 
154
  def query_model(question):
 
66
  Generate a response emphasizing the bot's capability to provide information related to composting food.
67
  """
68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
  try:
70
  system_message = "You are a chatbot specialized in providing information about food composting tips, tricks, and basics."
71
  user_message = f"Here's the information on composting: {relevant_segment}"
 
86
  except Exception as e:
87
  print(f"Error in generating response: {e}")
88
  return f"Error in generating response: {e}"
 
89
 
90
 
91
  def query_model(question):