Spaces:
Sleeping
Sleeping
import cv2 | |
import torch | |
import streamlit as st | |
from PIL import Image | |
from torch.nn import functional as nnf | |
# @st.cache_data | |
def generate2( | |
model, | |
tokenizer, | |
tokens=None, | |
prompt='', | |
embed=None, | |
entry_count=1, | |
entry_length=67, | |
top_p=0.98, | |
temperature=1, | |
stop_token='.', | |
): | |
# model.eval() | |
generated_list = [] | |
stop_token_index = tokenizer.encode(stop_token)[0] | |
filter_value = -float("Inf") | |
device = next(model.parameters()).device | |
with torch.no_grad(): | |
for entry_idx in range(entry_count): | |
if not tokens: | |
tokens = torch.tensor(tokenizer.encode(prompt)) | |
tokens = tokens.unsqueeze(0).to(device) | |
emb_tokens = model.gpt.transformer.wte(tokens) | |
if embed is not None: | |
generated = torch.cat((embed, emb_tokens), dim=1) | |
else: | |
generated = emb_tokens | |
for i in range(entry_length): | |
outputs = model.gpt(inputs_embeds=generated) | |
logits = outputs.logits | |
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
cumulative_probs = torch.cumsum(nnf.softmax(sorted_logits, dim=-1), dim=-1) | |
sorted_indices_to_remove = cumulative_probs > top_p | |
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[ | |
..., :-1 | |
].clone() | |
sorted_indices_to_remove[..., 0] = 0 | |
indices_to_remove = sorted_indices[sorted_indices_to_remove] | |
logits[:, indices_to_remove] = filter_value | |
top_k = 2000 | |
top_p = 0.98 | |
next_token = torch.argmax(logits, -1).unsqueeze(0) | |
next_token_embed = model.gpt.transformer.wte(next_token) | |
if tokens is None: | |
tokens = next_token | |
else: | |
tokens = torch.cat((tokens, next_token), dim=1) | |
generated = torch.cat((generated, next_token_embed), dim=1) | |
if stop_token_index == next_token.item(): | |
break | |
output_list = list(tokens.squeeze().cpu().numpy()) | |
output_text = tokenizer.decode(output_list) | |
output_text = filter_ngrams(output_text) | |
generated_list.append(output_text) | |
return generated_list[0] | |
def filter_ngrams(output_text): | |
a_pos = output_text.find(' A:') | |
sec_a_pos = output_text.find(' A:', a_pos + 1) | |
return output_text[:sec_a_pos] | |
def image_grid(imgs, rows, cols): | |
assert len(imgs) == rows * cols | |
w, h = imgs[0].size | |
grid = Image.new('RGB', size=(cols * w, rows * h)) | |
grid_w, grid_h = grid.size | |
for i, img in enumerate(imgs): | |
grid.paste(img, box=(i % cols * w, i // cols * h)) | |
return grid | |
def read_video(path, transform=None, frames_num=9, window=30): | |
frames = [] | |
cap = cv2.VideoCapture(path) | |
fps = int(cap.get(cv2.CAP_PROP_FPS)) | |
length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
N = length // (frames_num) | |
current_frame = 1 | |
for i in range(length): | |
ret, frame = cap.read(current_frame) | |
if ret and i == current_frame and len(frames) < frames_num: | |
size = 193, 193 | |
frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
frame.thumbnail(size, Image.ANTIALIAS) | |
frames.append(frame) | |
current_frame += N | |
cap.release() | |
return frames | |
# @st.cache_data | |
def get_caption(model, tokenizer, prefix, prefix_length, prompt=''): | |
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') | |
prefix = prefix.to(device) | |
with torch.no_grad(): | |
prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1) | |
if prompt: | |
generated_text_prefix = generate2(model, tokenizer, prompt=prompt, embed=prefix_embed) | |
else: | |
generated_text_prefix = generate2(model, tokenizer, embed=prefix_embed) | |
return generated_text_prefix.replace('\n', ' ') | |
# @st.cache_data | |
def get_ans(model, tokenizer, clip_emb, prefix_length, prompt): | |
output = get_caption(model, tokenizer, clip_emb, prefix_length, prompt=prompt) | |
ans = output[len(prompt):].strip() | |
return {'answer': ans} | |