Spaces:
Runtime error
Runtime error
File size: 6,156 Bytes
e1b1d60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import glob, os, sys; sys.path.append('../utils')
#import needed libraries
import seaborn as sns
from pandas import DataFrame
from sentence_transformers import SentenceTransformer, CrossEncoder, util
# from keybert import KeyBERT
from transformers import pipeline
import matplotlib.pyplot as plt
import numpy as np
import streamlit as st
import pandas as pd
from rank_bm25 import BM25Okapi
from sklearn.feature_extraction import _stop_words
import string
from tqdm.autonotebook import tqdm
import numpy as np
import docx
from docx.shared import Inches
from docx.shared import Pt
from docx.enum.style import WD_STYLE_TYPE
import logging
logger = logging.getLogger(__name__)
import tempfile
import sqlite3
import configparser
### These are lexcial search related functions #####
def bm25_tokenizer(text):
tokenized_doc = []
for token in text.lower().split():
token = token.strip(string.punctuation)
if len(token) > 0 and token not in _stop_words.ENGLISH_STOP_WORDS:
tokenized_doc.append(token)
return tokenized_doc
def bm25TokenizeDoc(paraList):
tokenized_corpus = []
##########Commenting this for now########### will incorporate paragrpah splitting later.
# for passage in tqdm(paraList):
# if len(passage.split()) >256:
# # st.write("Splitting")
# temp = " ".join(passage.split()[:256])
# tokenized_corpus.append(bm25_tokenizer(temp))
# temp = " ".join(passage.split()[256:])
# tokenized_corpus.append(bm25_tokenizer(temp))
# else:
# tokenized_corpus.append(bm25_tokenizer(passage))
######################################################################################33333
for passage in tqdm(paraList):
tokenized_corpus.append(bm25_tokenizer(passage))
return tokenized_corpus
def lexical_search(keyword, document_bm25):
config = configparser.ConfigParser()
config.read_file(open('udfPreprocess/paramconfig.cfg'))
top_k = int(config.get('lexical_search','TOP_K'))
bm25_scores = document_bm25.get_scores(bm25_tokenizer(keyword))
top_n = np.argpartition(bm25_scores, -top_k)[-top_k:]
bm25_hits = [{'corpus_id': idx, 'score': bm25_scores[idx]} for idx in top_n]
bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True)
return bm25_hits
@st.cache(allow_output_mutation=True)
def load_sentenceTransformer(name):
return SentenceTransformer(name)
def semantic_search(keywordlist,paraList):
##### Sematic Search #####
#query = "Does document contain {} issues ?".format(keyword)
config = configparser.ConfigParser()
config.read_file(open('udfPreprocess/paramconfig.cfg'))
model_name = config.get('semantic_search','MODEL_NAME')
bi_encoder = load_sentenceTransformer(model_name)
bi_encoder.max_seq_length = int(config.get('semantic_search','MAX_SEQ_LENGTH')) #Truncate long passages to 256 tokens
top_k = int(config.get('semantic_search','TOP_K'))
document_embeddings = bi_encoder.encode(paraList, convert_to_tensor=True, show_progress_bar=False)
question_embedding = bi_encoder.encode(keywordlist, convert_to_tensor=True)
hits = util.semantic_search(question_embedding, document_embeddings, top_k=top_k)
return hits
def show_results(keywordList):
document = docx.Document()
# document.add_heading('Document name:{}'.format(file_name), 2)
section = document.sections[0]
# Calling the footer
footer = section.footer
# Calling the paragraph already present in
# the footer section
footer_para = footer.paragraphs[0]
font_styles = document.styles
font_charstyle = font_styles.add_style('CommentsStyle', WD_STYLE_TYPE.CHARACTER)
font_object = font_charstyle.font
font_object.size = Pt(7)
# Adding the centered zoned footer
footer_para.add_run('''\tPowered by GIZ Data and the Sustainable Development Solution Network hosted at Hugging-Face spaces: https://huggingface.co/spaces/ppsingh/streamlit_dev''', style='CommentsStyle')
document.add_heading('Your Seacrhed for {}'.format(keywordList), level=1)
for keyword in keywordList:
st.write("Results for Query: {}".format(keyword))
para = document.add_paragraph().add_run("Results for Query: {}".format(keyword))
para.font.size = Pt(12)
bm25_hits, hits = search(keyword)
st.markdown("""
We will provide with 2 kind of results. The 'lexical search' and the semantic search.
""")
# In the semantic search part we provide two kind of results one with only Retriever (Bi-Encoder) and other the ReRanker (Cross Encoder)
st.markdown("Top few lexical search (BM25) hits")
document.add_paragraph("Top few lexical search (BM25) hits")
for hit in bm25_hits[0:5]:
if hit['score'] > 0.00:
st.write("\t Score: {:.3f}: \t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " ")))
document.add_paragraph("\t Score: {:.3f}: \t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " ")))
# st.table(bm25_hits[0:3])
st.markdown("\n-------------------------\n")
st.markdown("Top few Bi-Encoder Retrieval hits")
document.add_paragraph("\n-------------------------\n")
document.add_paragraph("Top few Bi-Encoder Retrieval hits")
hits = sorted(hits, key=lambda x: x['score'], reverse=True)
for hit in hits[0:5]:
# if hit['score'] > 0.45:
st.write("\t Score: {:.3f}: \t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " ")))
document.add_paragraph("\t Score: {:.3f}: \t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " "))) |