Spaces:
Runtime error
Runtime error
import glob, os, sys; sys.path.append('../utils') | |
#import needed libraries | |
import seaborn as sns | |
from pandas import DataFrame | |
from sentence_transformers import SentenceTransformer, CrossEncoder, util | |
# from keybert import KeyBERT | |
from transformers import pipeline | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import streamlit as st | |
import pandas as pd | |
from rank_bm25 import BM25Okapi | |
from sklearn.feature_extraction import _stop_words | |
import string | |
from tqdm.autonotebook import tqdm | |
import numpy as np | |
import docx | |
from docx.shared import Inches | |
from docx.shared import Pt | |
from docx.enum.style import WD_STYLE_TYPE | |
import logging | |
logger = logging.getLogger(__name__) | |
import tempfile | |
import sqlite3 | |
import configparser | |
### These are lexcial search related functions ##### | |
def bm25_tokenizer(text): | |
tokenized_doc = [] | |
for token in text.lower().split(): | |
token = token.strip(string.punctuation) | |
if len(token) > 0 and token not in _stop_words.ENGLISH_STOP_WORDS: | |
tokenized_doc.append(token) | |
return tokenized_doc | |
def bm25TokenizeDoc(paraList): | |
tokenized_corpus = [] | |
##########Commenting this for now########### will incorporate paragrpah splitting later. | |
# for passage in tqdm(paraList): | |
# if len(passage.split()) >256: | |
# # st.write("Splitting") | |
# temp = " ".join(passage.split()[:256]) | |
# tokenized_corpus.append(bm25_tokenizer(temp)) | |
# temp = " ".join(passage.split()[256:]) | |
# tokenized_corpus.append(bm25_tokenizer(temp)) | |
# else: | |
# tokenized_corpus.append(bm25_tokenizer(passage)) | |
######################################################################################33333 | |
for passage in tqdm(paraList): | |
tokenized_corpus.append(bm25_tokenizer(passage)) | |
return tokenized_corpus | |
def lexical_search(keyword, document_bm25): | |
config = configparser.ConfigParser() | |
config.read_file(open('udfPreprocess/paramconfig.cfg')) | |
top_k = int(config.get('lexical_search','TOP_K')) | |
bm25_scores = document_bm25.get_scores(bm25_tokenizer(keyword)) | |
top_n = np.argpartition(bm25_scores, -top_k)[-top_k:] | |
bm25_hits = [{'corpus_id': idx, 'score': bm25_scores[idx]} for idx in top_n] | |
bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True) | |
return bm25_hits | |
def load_sentenceTransformer(name): | |
return SentenceTransformer(name) | |
def semantic_search(keywordlist,paraList): | |
##### Sematic Search ##### | |
#query = "Does document contain {} issues ?".format(keyword) | |
config = configparser.ConfigParser() | |
config.read_file(open('udfPreprocess/paramconfig.cfg')) | |
model_name = config.get('semantic_search','MODEL_NAME') | |
bi_encoder = load_sentenceTransformer(model_name) | |
bi_encoder.max_seq_length = int(config.get('semantic_search','MAX_SEQ_LENGTH')) #Truncate long passages to 256 tokens | |
top_k = int(config.get('semantic_search','TOP_K')) | |
document_embeddings = bi_encoder.encode(paraList, convert_to_tensor=True, show_progress_bar=False) | |
question_embedding = bi_encoder.encode(keywordlist, convert_to_tensor=True) | |
hits = util.semantic_search(question_embedding, document_embeddings, top_k=top_k) | |
return hits | |
def show_results(keywordList): | |
document = docx.Document() | |
# document.add_heading('Document name:{}'.format(file_name), 2) | |
section = document.sections[0] | |
# Calling the footer | |
footer = section.footer | |
# Calling the paragraph already present in | |
# the footer section | |
footer_para = footer.paragraphs[0] | |
font_styles = document.styles | |
font_charstyle = font_styles.add_style('CommentsStyle', WD_STYLE_TYPE.CHARACTER) | |
font_object = font_charstyle.font | |
font_object.size = Pt(7) | |
# Adding the centered zoned footer | |
footer_para.add_run('''\tPowered by GIZ Data and the Sustainable Development Solution Network hosted at Hugging-Face spaces: https://huggingface.co/spaces/ppsingh/streamlit_dev''', style='CommentsStyle') | |
document.add_heading('Your Seacrhed for {}'.format(keywordList), level=1) | |
for keyword in keywordList: | |
st.write("Results for Query: {}".format(keyword)) | |
para = document.add_paragraph().add_run("Results for Query: {}".format(keyword)) | |
para.font.size = Pt(12) | |
bm25_hits, hits = search(keyword) | |
st.markdown(""" | |
We will provide with 2 kind of results. The 'lexical search' and the semantic search. | |
""") | |
# In the semantic search part we provide two kind of results one with only Retriever (Bi-Encoder) and other the ReRanker (Cross Encoder) | |
st.markdown("Top few lexical search (BM25) hits") | |
document.add_paragraph("Top few lexical search (BM25) hits") | |
for hit in bm25_hits[0:5]: | |
if hit['score'] > 0.00: | |
st.write("\t Score: {:.3f}: \t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " "))) | |
document.add_paragraph("\t Score: {:.3f}: \t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " "))) | |
# st.table(bm25_hits[0:3]) | |
st.markdown("\n-------------------------\n") | |
st.markdown("Top few Bi-Encoder Retrieval hits") | |
document.add_paragraph("\n-------------------------\n") | |
document.add_paragraph("Top few Bi-Encoder Retrieval hits") | |
hits = sorted(hits, key=lambda x: x['score'], reverse=True) | |
for hit in hits[0:5]: | |
# if hit['score'] > 0.45: | |
st.write("\t Score: {:.3f}: \t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " "))) | |
document.add_paragraph("\t Score: {:.3f}: \t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " "))) |