# set path import glob, os, sys; sys.path.append('../utils') import streamlit as st import json import logging from utils.lexical_search import runLexicalPreprocessingPipeline, lexical_search from utils.semantic_search import runSemanticPreprocessingPipeline, semantic_keywordsearch from utils.checkconfig import getconfig from utils.streamlitcheck import checkbox_without_preselect # Declare all the necessary variables config = getconfig('paramconfig.cfg') split_by = config.get('semantic_search','SPLIT_BY') split_length = int(config.get('semantic_search','SPLIT_LENGTH')) split_overlap = int(config.get('semantic_search','SPLIT_OVERLAP')) split_respect_sentence_boundary = bool(int(config.get('semantic_search', 'RESPECT_SENTENCE_BOUNDARY'))) remove_punc = bool(int(config.get('semantic_search','REMOVE_PUNC'))) embedding_model = config.get('semantic_search','RETRIEVER') embedding_model_format = config.get('semantic_search','RETRIEVER_FORMAT') embedding_layer = int(config.get('semantic_search','RETRIEVER_EMB_LAYER')) embedding_dim = int(config.get('semantic_search','EMBEDDING_DIM')) max_seq_len = int(config.get('semantic_search','MAX_SEQ_LENGTH')) retriever_top_k = int(config.get('semantic_search','RETRIEVER_TOP_K')) reader_model = config.get('semantic_search','READER') reader_top_k = int(config.get('semantic_search','RETRIEVER_TOP_K')) top_k_per_candidate = int(config.get('semantic_search','READER_TOP_K_PER_CANDIDATE')) lexical_split_by= config.get('lexical_search','SPLIT_BY') lexical_split_length=int(config.get('lexical_search','SPLIT_LENGTH')) lexical_split_overlap = int(config.get('lexical_search','SPLIT_OVERLAP')) lexical_remove_punc = bool(int(config.get('lexical_search','REMOVE_PUNC'))) lexical_top_k=int(config.get('lexical_search','TOP_K')) def app(): with st.container(): st.markdown("

Search

", unsafe_allow_html=True) st.write(' ') st.write(' ') with st.expander("ℹī¸ - About this app", expanded=False): st.write( """ The *Search* app is an interface \ for doing contextual and keyword searches in \ policy documents. \ """) st.write("") st.write(""" The application allows its user to perform a search\ based on two options: a lexical search([TFIDF](https://en.wikipedia.org/wiki/Tf%E2%80%93idf))\ and semantic search. [bi-encoder](https://www.sbert.net/examples/applications/retrieve_rerank/README.html)\ The lexical search only \ displays paragraphs in the document with exact matching results, \ the semantic search shows paragraphs with meaningful connections \ (e.g., synonyms) based on the search context. Both \ methods employ a probabilistic retrieval framework in its identification\ of relevant paragraphs. By defualt the search is performed using \ 'Semantic Search', and to find 'Exact/Lexical Matches' please tick the \ checkbox provided which will by-pass semantic search. Furthermore,\ the application allows the user to search for pre-defined keywords \ from different thematic buckets present in sidebar.""") st.write("") st.write(""" The Exact Matches gives back top {} findings, and Semantic search provides with top {} answers.""".format(lexical_top_k, retriever_top_k)) st.write("") st.write("") st.markdown("Some runtime metrics tested with cpu: Intel(R) Xeon(R) CPU @ 2.20GHz, memory: 13GB") col1,col2,col3= st.columns([2,4,4]) with col1: st.caption("OCR File processing") # st.markdown('
50 sec
', unsafe_allow_html=True) st.write("50 sec") with col2: st.caption("Lexical Search on 200 paragraphs(~ 35 pages)") # st.markdown('
12 sec
', unsafe_allow_html=True) st.write("15 sec") with col3: st.caption("Semantic search on 200 paragraphs(~ 35 pages)") # st.markdown('
120 sec
', unsafe_allow_html=True) st.write("120 sec(including emebedding creation)") with st.sidebar: with open('docStore/sample/keywordexample.json','r') as json_file: keywordexample = json.load(json_file) # genre = st.radio("Select Keyword Category", list(keywordexample.keys())) st.caption("Select Keyword Category") genre = checkbox_without_preselect(list(keywordexample.keys())) if genre: keywordList = keywordexample[genre] else: keywordList = None st.markdown("---") with st.container(): type_hinting = "Please enter here your question and we \ will look for an answer in the document\ OR enter the keyword you are looking \ for and we will look for similar\ context in the document.\ You can also explore predefined sets of keywords from sidebar. " if keywordList is not None: # queryList = st.text_input("You selected the {} category we \ # will look for these keywords in document".format(genre) # value="{}".format(keywordList)) queryList = st.text_input(type_hinting, value = "{}".format(keywordList)) else: queryList = st.text_input(type_hinting, placeholder="Enter keyword/query here") searchtype = st.checkbox("Show only Exact Matches") if st.button("Find them"): if queryList == "": st.info("🤔 No keyword provided, if you dont have any, \ please try example sets from sidebar!") logging.warning("Terminated as no keyword provided") else: if 'filepath' in st.session_state: if searchtype: all_documents = runLexicalPreprocessingPipeline( file_name=st.session_state['filename'], file_path=st.session_state['filepath'], split_by=lexical_split_by, split_length=lexical_split_length, split_overlap=lexical_split_overlap, remove_punc=lexical_remove_punc) logging.info("performing lexical search") with st.spinner("Performing Exact matching search \ (Lexical search) for you"): lexical_search(query=queryList, documents = all_documents['documents'], top_k = lexical_top_k ) else: all_documents = runSemanticPreprocessingPipeline( file_path= st.session_state['filepath'], file_name = st.session_state['filename'], split_by=split_by, split_length= split_length, split_overlap=split_overlap, remove_punc= remove_punc, split_respect_sentence_boundary=split_respect_sentence_boundary) if len(all_documents['documents']) > 100: warning_msg = ": This might take sometime, please sit back and relax." else: warning_msg = "" logging.info("starting semantic search") with st.spinner("Performing Similar/Contextual search{}".format(warning_msg)): semantic_keywordsearch(query = queryList, documents = all_documents['documents'], embedding_model=embedding_model, embedding_layer=embedding_layer, embedding_model_format=embedding_model_format, reader_model=reader_model,reader_top_k=reader_top_k, retriever_top_k=retriever_top_k, embedding_dim=embedding_dim, max_seq_len=max_seq_len, top_k_per_candidate = top_k_per_candidate) else: st.info("🤔 No document found, please try to upload it at the sidebar!") logging.warning("Terminated as no document provided")