Spaces:
Runtime error
Runtime error
File size: 7,004 Bytes
7fbcea5 4c36cd4 7fbcea5 4c36cd4 7fbcea5 4c36cd4 7fbcea5 4c36cd4 7fbcea5 4c36cd4 7fbcea5 4c36cd4 7fbcea5 4c36cd4 7fbcea5 4c36cd4 7fbcea5 4c36cd4 7fbcea5 4c36cd4 7fbcea5 8890bde 7fbcea5 8890bde 7fbcea5 4c36cd4 7fbcea5 4c36cd4 7fbcea5 4c36cd4 7fbcea5 4c36cd4 7fbcea5 4c36cd4 7fbcea5 4c36cd4 7fbcea5 4c36cd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import streamlit as st
from transformers import pipeline
import requests
from bs4 import BeautifulSoup
from nltk.corpus import stopwords
import nltk
import string
from streamlit.components.v1 import html
from sentence_transformers.cross_encoder import CrossEncoder as CE
import numpy as np
from typing import List, Tuple
import torch
class CrossEncoder:
def __init__(self, model_path: str, **kwargs):
self.model = CE(model_path, **kwargs)
def predict(self, sentences: List[Tuple[str,str]], batch_size: int = 32, show_progress_bar: bool = True) -> List[float]:
return self.model.predict(
sentences=sentences,
batch_size=batch_size,
show_progress_bar=show_progress_bar)
SCITE_API_KEY = st.secrets["SCITE_API_KEY"]
def remove_html(x):
soup = BeautifulSoup(x, 'html.parser')
text = soup.get_text()
return text
def search(term, limit=10, clean=True, strict=True):
term = clean_query(term, clean=clean, strict=strict)
# heuristic, 2 searches strict and not? and then merge?
search = f"https://api.scite.ai/search?mode=citations&term={term}&limit={limit}&offset=0&user_slug=domenic-rosati-keW5&compute_aggregations=false"
req = requests.get(
search,
headers={
'Authorization': f'Bearer {SCITE_API_KEY}'
}
)
return (
[remove_html('\n'.join([cite['snippet'] for cite in doc['citations']])) for doc in req.json()['hits']],
[(doc['doi'], doc['citations'], doc['title'])
for doc in req.json()['hits']]
)
def find_source(text, docs):
for doc in docs:
if text in remove_html(doc[1][0]['snippet']):
new_text = text
for snip in remove_html(doc[1][0]['snippet']).split('.'):
if text in snip:
new_text = snip
return {
'citation_statement': doc[1][0]['snippet'].replace('<strong class="highlight">', '').replace('</strong>', ''),
'text': new_text,
'from': doc[1][0]['source'],
'supporting': doc[1][0]['target'],
'source_title': doc[2],
'source_link': f"https://scite.ai/reports/{doc[0]}"
}
return None
@st.experimental_singleton
def init_models():
nltk.download('stopwords')
stop = set(stopwords.words('english') + list(string.punctuation))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
question_answerer = pipeline(
"question-answering", model='sultan/BioM-ELECTRA-Large-SQuAD2-BioASQ8B',
device=device
)
reranker = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', device=device)
return question_answerer, reranker, stop, device
qa_model, reranker, stop, device = init_models()
def clean_query(query, strict=True, clean=True):
operator = ' '
if strict:
operator = ' AND '
query = operator.join(
[i for i in query.lower().split(' ') if clean and i not in stop])
if clean:
query = query.translate(str.maketrans('', '', string.punctuation))
return query
def card(title, context, score, link, supporting):
st.markdown(f"""
<div class="container-fluid">
<div class="row align-items-start">
<div class="col-md-12 col-sm-12">
<br>
<span>
{context}
[<b>Score: </b>{score}]
</span>
<br>
<b>From <a href="{link}">{title}</a></b>
</div>
</div>
</div>
""", unsafe_allow_html=True)
html(f"""
<div
class="scite-badge"
data-doi="{supporting}"
data-layout="horizontal"
data-show-zero="false"
data-show-labels="false"
data-tally-show="true"
/>
<script
async
type="application/javascript"
src="https://cdn.scite.ai/badge/scite-badge-latest.min.js">
</script>
""", width=None, height=42, scrolling=False)
st.title("Scientific Question Answering with Citations")
st.write("""
Ask a scientific question and get an answer drawn from [scite.ai](https://scite.ai) corpus of over 1.1bn citation statements.
Answers are linked to source documents containing citations where users can explore further evidence from scientific literature for the answer.
""")
st.markdown("""
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous">
""", unsafe_allow_html=True)
def run_query(query):
if device == 'cpu':
limit = 50
context_limit = 10
else:
limit = 100
context_limit = 25
contexts, orig_docs = search(query, limit=limit)
if len(contexts) == 0 or not ''.join(contexts).strip():
return st.markdown("""
<div class="container-fluid">
<div class="row align-items-start">
<div class="col-md-12 col-sm-12">
Sorry... no results for that question! Try another...
</div>
</div>
</div>
""", unsafe_allow_html=True)
sentence_pairs = [[query, context] for context in contexts]
scores = reranker.predict(sentence_pairs, batch_size=limit, show_progress_bar=False)
hits = {contexts[idx]: scores[idx] for idx in range(len(scores))}
sorted_contexts = [k for k,v in sorted(hits.items(), key=lambda x: x[0], reverse=True)]
context = '\n'.join(sorted_contexts[:context_limit])
results = []
model_results = qa_model(question=query, context=context, top_k=10)
for result in model_results:
support = find_source(result['answer'], orig_docs)
if not support:
continue
results.append({
"answer": support['text'],
"title": support['source_title'],
"link": support['source_link'],
"context": support['citation_statement'],
"score": result['score'],
"doi": support["supporting"]
})
sorted_result = sorted(results, key=lambda x: x['score'], reverse=True)
sorted_result = list({
result['context']: result for result in sorted_result
}.values())
sorted_result = sorted(
sorted_result, key=lambda x: x['score'], reverse=True)
for r in sorted_result:
answer = r["answer"]
ctx = remove_html(r["context"]).replace(answer, f"<mark>{answer}</mark>").replace(
'<cite', '<a').replace('</cite', '</a').replace('data-doi="', 'href="https://scite.ai/reports/')
title = r.get("title", '').replace("_", " ")
score = round(r["score"], 4)
card(title, ctx, score, r['link'], r['doi'])
query = st.text_input("Ask scientific literature a question", "")
if query != "":
with st.spinner('Loading...'):
run_query(query)
|