File size: 7,004 Bytes
7fbcea5
 
 
 
4c36cd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fbcea5
 
 
4c36cd4
7fbcea5
 
 
 
 
4c36cd4
 
 
 
7fbcea5
 
 
 
 
 
 
 
4c36cd4
 
 
7fbcea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c36cd4
 
7fbcea5
 
 
4c36cd4
 
 
 
 
 
 
 
 
 
 
7fbcea5
4c36cd4
 
 
 
 
 
 
 
 
7fbcea5
 
4c36cd4
 
 
7fbcea5
 
 
 
 
 
 
 
 
 
 
 
 
 
4c36cd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fbcea5
 
 
 
 
 
 
 
 
 
 
 
 
4c36cd4
 
 
 
 
 
 
 
7fbcea5
 
 
 
8890bde
7fbcea5
 
 
8890bde
7fbcea5
4c36cd4
 
 
 
 
 
7fbcea5
 
 
 
4c36cd4
 
7fbcea5
 
 
 
 
4c36cd4
 
7fbcea5
 
 
 
 
 
4c36cd4
 
7fbcea5
 
 
4c36cd4
 
 
7fbcea5
4c36cd4
7fbcea5
 
 
 
4c36cd4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import streamlit as st
from transformers import pipeline
import requests
from bs4 import BeautifulSoup
from nltk.corpus import stopwords
import nltk
import string
from streamlit.components.v1 import html
from sentence_transformers.cross_encoder import CrossEncoder as CE
import numpy as np
from typing import List, Tuple
import torch

class CrossEncoder:
    def __init__(self, model_path: str, **kwargs):
        self.model = CE(model_path, **kwargs)

    def predict(self, sentences: List[Tuple[str,str]], batch_size: int = 32, show_progress_bar: bool = True) -> List[float]:
        return self.model.predict(
            sentences=sentences,
            batch_size=batch_size,
            show_progress_bar=show_progress_bar)


SCITE_API_KEY = st.secrets["SCITE_API_KEY"]


def remove_html(x):
    soup = BeautifulSoup(x, 'html.parser')
    text = soup.get_text()
    return text


def search(term, limit=10, clean=True, strict=True):
    term = clean_query(term, clean=clean, strict=strict)
    # heuristic, 2 searches strict and not? and then merge?
    search = f"https://api.scite.ai/search?mode=citations&term={term}&limit={limit}&offset=0&user_slug=domenic-rosati-keW5&compute_aggregations=false"
    req = requests.get(
        search,
        headers={
            'Authorization': f'Bearer {SCITE_API_KEY}'
        }
    )
    return (
        [remove_html('\n'.join([cite['snippet'] for cite in doc['citations']])) for doc in req.json()['hits']],
        [(doc['doi'], doc['citations'], doc['title'])
         for doc in req.json()['hits']]
    )


def find_source(text, docs):
    for doc in docs:
        if text in remove_html(doc[1][0]['snippet']):
            new_text = text
            for snip in remove_html(doc[1][0]['snippet']).split('.'):
                if text in snip:
                    new_text = snip
            return {
                'citation_statement': doc[1][0]['snippet'].replace('<strong class="highlight">', '').replace('</strong>', ''),
                'text': new_text,
                'from': doc[1][0]['source'],
                'supporting': doc[1][0]['target'],
                'source_title': doc[2],
                'source_link': f"https://scite.ai/reports/{doc[0]}"
            }
    return None


@st.experimental_singleton
def init_models():
    nltk.download('stopwords')
    stop = set(stopwords.words('english') + list(string.punctuation))
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    question_answerer = pipeline(
        "question-answering", model='sultan/BioM-ELECTRA-Large-SQuAD2-BioASQ8B',
        device=device
    )
    reranker = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', device=device)
    return question_answerer, reranker, stop, device

qa_model, reranker, stop, device = init_models()

def clean_query(query, strict=True, clean=True):
    operator = ' '
    if strict:
        operator = ' AND '
    query = operator.join(
        [i for i in query.lower().split(' ') if clean and i not in stop])
    if clean:
        query = query.translate(str.maketrans('', '', string.punctuation))
    return query



def card(title, context, score, link, supporting):
    st.markdown(f"""
    <div class="container-fluid">
        <div class="row align-items-start">
             <div  class="col-md-12 col-sm-12">
                 <br>
                 <span>
                     {context}
                     [<b>Score: </b>{score}]
                 </span>
                 <br>
                 <b>From <a href="{link}">{title}</a></b>
             </div>
        </div>
     </div>
        """, unsafe_allow_html=True)
    html(f"""
    <div
                    class="scite-badge"
                    data-doi="{supporting}"
                    data-layout="horizontal"
                    data-show-zero="false"
                    data-show-labels="false"
                    data-tally-show="true"
                />
    <script
    async
    type="application/javascript"
    src="https://cdn.scite.ai/badge/scite-badge-latest.min.js">
  </script>
  """, width=None, height=42, scrolling=False)


st.title("Scientific Question Answering with Citations")

st.write("""
Ask a scientific question and get an answer drawn from [scite.ai](https://scite.ai) corpus of over 1.1bn citation statements.
Answers are linked to source documents containing citations where users can explore further evidence from scientific literature for the answer.
""")

st.markdown("""
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous">
""", unsafe_allow_html=True)

def run_query(query):
    if device == 'cpu':
        limit = 50
        context_limit = 10
    else:
        limit = 100
        context_limit = 25
    contexts, orig_docs = search(query, limit=limit)
    if len(contexts) == 0 or not ''.join(contexts).strip():
        return st.markdown("""
        <div class="container-fluid">
        <div class="row align-items-start">
             <div  class="col-md-12 col-sm-12">
            Sorry... no results for that question! Try another...
         </div>
        </div>
     </div>
        """, unsafe_allow_html=True)

    sentence_pairs = [[query, context] for context in contexts]
    scores = reranker.predict(sentence_pairs, batch_size=limit, show_progress_bar=False)
    hits = {contexts[idx]: scores[idx] for idx in range(len(scores))}
    sorted_contexts = [k for k,v in sorted(hits.items(), key=lambda x: x[0], reverse=True)]

    context = '\n'.join(sorted_contexts[:context_limit])
    results = []
    model_results = qa_model(question=query, context=context, top_k=10)
    for result in model_results:
        support = find_source(result['answer'], orig_docs)
        if not support:
            continue
        results.append({
            "answer": support['text'],
            "title": support['source_title'],
            "link": support['source_link'],
            "context": support['citation_statement'],
            "score": result['score'],
            "doi": support["supporting"]
        })

    sorted_result = sorted(results, key=lambda x: x['score'], reverse=True)
    sorted_result = list({
        result['context']: result for result in sorted_result
    }.values())
    sorted_result = sorted(
        sorted_result, key=lambda x: x['score'], reverse=True)

    for r in sorted_result:
        answer = r["answer"]
        ctx = remove_html(r["context"]).replace(answer, f"<mark>{answer}</mark>").replace(
            '<cite', '<a').replace('</cite', '</a').replace('data-doi="', 'href="https://scite.ai/reports/')
        title = r.get("title", '').replace("_", " ")
        score = round(r["score"], 4)
        card(title, ctx, score, r['link'], r['doi'])

query = st.text_input("Ask scientific literature a question", "")

if query != "":
    with st.spinner('Loading...'):
        run_query(query)