File size: 838 Bytes
f908c53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
from transformers import pipeline
import gradio as gr

# Load the sentiment analysis model
sentiment_analysis = pipeline("sentiment-analysis")

# Define the prediction function
def predict_sentiment(text):
    result = sentiment_analysis(text)[0]
    label = result['label']
    confidence = round(result['score'], 4)
    return f"Sentiment: {label}, Confidence: {confidence}"

# Create a Gradio interface
interface = gr.Interface(fn=predict_sentiment,
                         inputs=gr.inputs.Textbox(lines=2, placeholder="Type your text here..."),
                         outputs="text",
                         title="Text Sentiment Analysis",
                         description="This tool predicts the sentiment of the entered text. Sentiment can be positive, negative, or neutral.")

# Launch the application
interface.launch()