Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
# Specify the model and revision explicitly | |
model_name = "distilbert-base-uncased-finetuned-sst-2-english" | |
revision = "af0f99b" | |
# Load the sentiment analysis pipeline with the specified model and revision | |
sentiment_pipeline = pipeline("sentiment-analysis", model=model_name, revision=revision) | |
def predict_sentiment(text): | |
""" | |
Predicts the sentiment of the input text. | |
Returns the label (POSITIVE/NEGATIVE) and the confidence score. | |
""" | |
result = sentiment_pipeline(text)[0] | |
label = result['label'] | |
confidence = round(result['score'], 4) | |
return f"Sentiment: {label}, Confidence: {confidence}" | |
# Create a Gradio interface | |
interface = gr.Interface(fn=predict_sentiment, | |
inputs=gr.Textbox(lines=2, placeholder="Enter Text Here..."), | |
outputs="text", | |
title="Simple Text Sentiment Analysis", | |
description="A simple text sentiment analysis tool using Hugging Face's transformers.") | |
# Launch the application | |
interface.launch() | |