import gradio as gr from transformers import pipeline # Specify the model and revision explicitly model_name = "distilbert-base-uncased-finetuned-sst-2-english" revision = "af0f99b" # Load the sentiment analysis pipeline with the specified model and revision sentiment_pipeline = pipeline("sentiment-analysis", model=model_name, revision=revision) def predict_sentiment(text): """ Predicts the sentiment of the input text. Returns the label (POSITIVE/NEGATIVE) and the confidence score. """ result = sentiment_pipeline(text)[0] label = result['label'] confidence = round(result['score'], 4) return f"Sentiment: {label}, Confidence: {confidence}" # Create a Gradio interface interface = gr.Interface(fn=predict_sentiment, inputs=gr.Textbox(lines=2, placeholder="Enter Text Here..."), outputs="text", title="Simple Text Sentiment Analysis", description="A simple text sentiment analysis tool using Hugging Face's transformers.") # Launch the application interface.launch()