File size: 43,654 Bytes
c90e00d 8d8e17a c90e00d 8d8e17a c90e00d 8d8e17a c90e00d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 |
import streamlit as st
import pandas as pd
import numpy as np
from langchain_openai import ChatOpenAI
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
import os
from dotenv import load_dotenv
import yfinance as yf
import matplotlib.pyplot as plt
import seaborn as sns
# Import our agent modules
from agents import AgentState, AgentState2
from agents.graph import setup_graph_with_tracking, setup_new_investments_graph
# Load environment variables
load_dotenv()
# Configure page
st.set_page_config(
page_title="Cardinal ai",
page_icon="🧭",
layout="wide"
)
# Initialize OpenAI client
openai_api_key = os.getenv("OPENAI_API_KEY")
# llm = ChatOpenAI(model="gpt-4-turbo", temperature=0.2, api_key=openai_api_key)
# # Initialize embedding model
# embeddings = HuggingFaceEmbeddings(model_name="Snowflake/snowflake-arctic-embed-l")
# # Initialize Vector DB
# vector_db = Chroma(embedding_function=embeddings, persist_directory="./chroma_db")
# Streamlit UI components
st.image("assets/sunrise.svg")
# st.title("Asset Atlas - AI Financial Advisor")
# st.subheader("Research, Summary, and Analysis")
# with st.expander("About this app", expanded=False):
# st.write("""
# This app provides personalized financial advice based on your portfolio, risk tolerance, and investment goals.
# It analyzes technical indicators, relevant news, and market trends to offer tailored recommendations.
# """)
# Sidebar for user inputs
with st.sidebar:
st.header("Your Profile")
# Risk tolerance selection
risk_level = st.select_slider(
"Risk Tolerance",
options=["Very Conservative", "Conservative", "Moderate", "Aggressive", "Very Aggressive"],
value="Moderate"
)
# Investment goals
investment_goals = st.text_area("Investment Goals", "Retirement in 20 years, building wealth, passive income")
st.markdown("")
# Portfolio input
st.header("Your Portfolio")
# Default portfolio for demonstration
default_portfolio = pd.DataFrame({
'Ticker': ['AAPL', 'MSFT', 'GOOGL', 'AMZN', 'BRK-B'],
'Shares': [10, 5, 3, 2, 4],
'Purchase Price': [250.00, 250.00, 250.00, 250.00, 250.00]
})
# Let user edit the portfolio
portfolio_df = st.data_editor(
default_portfolio,
column_config={
"Ticker": st.column_config.TextColumn("Ticker Symbol"),
"Shares": st.column_config.NumberColumn("Number of Shares", min_value=0),
"Purchase Price": st.column_config.NumberColumn("Purchase Price ($)", min_value=0.01, format="$%.2f")
},
num_rows="dynamic",
use_container_width=True
)
generate_button = st.button("Generate Recommendations", type="secondary", use_container_width=True)
# Initialize session state to store our analysis results
if 'portfolio_analyzed' not in st.session_state:
st.session_state.portfolio_analyzed = False
if 'final_state' not in st.session_state:
st.session_state.final_state = None
if 'portfolio_data' not in st.session_state:
st.session_state.portfolio_data = None
# Main content area
if generate_button or st.session_state.portfolio_analyzed:
# If we're here because of the session state, we don't need to re-run the analysis
if generate_button:
# Convert portfolio dataframe to required format
portfolio_data = {}
# Create a placeholder for the progress indicator
progress_placeholder = st.empty()
status_placeholder = st.empty()
# Show a spinner while processing
with st.spinner("Analyzing your portfolio and generating recommendations..."):
progress_placeholder.progress(0, "Starting analysis...")
status_placeholder.info("Fetching current market data...")
for _, row in portfolio_df.iterrows():
ticker = row['Ticker']
shares = row['Shares']
purchase_price = row['Purchase Price']
try:
# Get current price
stock = yf.Ticker(ticker)
current_price = stock.history(period="1d")['Close'].iloc[-1]
# Calculate values
current_value = current_price * shares
purchase_value = purchase_price * shares
gain_loss = current_value - purchase_value
gain_loss_pct = (gain_loss / purchase_value) * 100
# Store in portfolio data
portfolio_data[ticker] = {
"shares": shares,
"purchase_price": purchase_price,
"current_price": current_price,
"value": current_value,
"gain_loss": gain_loss,
"gain_loss_pct": gain_loss_pct
}
except Exception as e:
st.error(f"Error processing {ticker}: {e}")
if len(portfolio_data) == len(portfolio_df):
st.subheader("Current valuation")
# Create a dataframe for portfolio valuation
valuation_data = []
total_value = 0
total_cost = 0
for ticker, data in portfolio_data.items():
current_value = data['value']
purchase_value = data['purchase_price'] * data['shares']
total_value += current_value
total_cost += purchase_value
valuation_data.append({
'Ticker': ticker,
'Shares': data['shares'],
'Purchase Price': f"${data['purchase_price']:.2f}",
'Current Price': f"${data['current_price']:.2f}",
'Cost Basis': f"${purchase_value:.2f}",
'Current Value': f"${current_value:.2f}",
'Gain/Loss ($)': f"${data['gain_loss']:.2f}",
'Gain/Loss (%)': f"{data['gain_loss_pct']:.2f}%"
})
# Calculate total gain/loss
total_gain_loss = total_value - total_cost
total_gain_loss_pct = (total_gain_loss / total_cost * 100) if total_cost > 0 else 0
# Display the valuation table
valuation_df = pd.DataFrame(valuation_data)
st.dataframe(valuation_df, use_container_width=True)
# Display portfolio valuations and allocations with gain/loss
#if portfolio_data:
# Create a better layout with metrics on the left and pie chart on the right
st.subheader("Performance & allocation summary")
# Create two columns for the layout with adjusted ratio
left_col, right_col = st.columns([1, 1])
# Left column: stacked metrics
with left_col:
cont_col, gap_col = st.columns([2, 1])
with cont_col:
# Add a bit of vertical space for alignment
st.write("")
# Total Portfolio Value metric
st.metric("Total Portfolio Value", f"${total_value:.2f}", f"${total_gain_loss:.2f}", border=True)
# Add some space between metrics
st.write("")
# Total Cost Basis metric
st.metric("Total Cost Basis", f"${total_cost:.2f}", border=True)
# Add some space between metrics
st.write("")
# Total Return metric
st.metric("Total Return", f"{total_gain_loss_pct:.2f}%", border=True)
with gap_col:
st.markdown("")
# Right column: pie chart
with right_col:
# Prepare data for pie chart
st.markdown("")
allocation_data = {}
for ticker, data in portfolio_data.items():
allocation_data[ticker] = data['value']
# Create a figure for the pie chart
fig, ax = plt.subplots(figsize=(4, 3.2))
# Create the pie chart
wedges, texts, autotexts = ax.pie(
allocation_data.values(),
labels=allocation_data.keys(),
autopct='%1.1f%%',
startangle=90,
wedgeprops={'edgecolor': 'white'},
textprops={'fontsize': 8}
)
# Equal aspect ratio ensures that pie is drawn as a circle
ax.axis('equal')
# Manually set font sizes
plt.setp(autotexts, size=8, weight="bold")
plt.setp(texts, size=8)
# Add a title
plt.title('Portfolio Allocation by Value', fontsize=10)
# Use tight layout
plt.tight_layout()
# Display the pie chart
st.pyplot(fig)
# Initialize state
initial_state = AgentState(
portfolio_data=portfolio_data,
risk_level=risk_level,
investment_goals=investment_goals,
technical_analysis={},
news_analysis=[],
fundamental_analysis={},
rag_context=None,
messages=[{
"role": "human",
"content": f"Please analyze my portfolio with risk level '{risk_level}' and investment goals: '{investment_goals}'."
}],
next="",
recommendations=[],
portfolio_strengths=[],
portfolio_weaknesses=[],
new_investments=[],
allocation_advice="",
risk_assessment="",
final_report=""
)
# Create a custom callback to track progress
def track_progress(state):
# Simple progress tracking based on what's in the state
# Each node adds its output to the state, so we can use that to determine progress
# Check which stage we're at based on what's in the state
if "final_report" in state and state["final_report"]:
progress_placeholder.progress(100, "Complete")
status_placeholder.success("Analysis complete!")
elif "recommendations" in state and state["recommendations"]:
progress_placeholder.progress(90, "Generating Recommendations")
status_placeholder.info("Recommendations generated. Finalizing report...")
elif "rag_context" in state and state["rag_context"]:
progress_placeholder.progress(75, "RAG Analysis")
status_placeholder.info("Value investing analysis complete. Generating recommendations...")
elif "news_analysis" in state and state["news_analysis"]:
progress_placeholder.progress(60, "News Analysis")
status_placeholder.info("News analysis complete. Applying value investing principles...")
### SHOW NEWS
# Display relevant news with links if available
#if "news_analysis" in final_state and final_state["news_analysis"]:
if state["news_analysis"]:
st.markdown("")
st.subheader("Market news for your portfolio")
# Display top two news articles outside the expander
top_articles_shown = 0
for i, news_item in enumerate(state["news_analysis"]):
if isinstance(news_item, dict) and top_articles_shown < 2:
title = news_item.get("title", "")
summary = news_item.get("summary", "")
url = news_item.get("url", "")
urlToImage = news_item.get("urlToImage", "")
sentiment = news_item.get("sentiment", "neutral")
if not summary or summary == "No description available.":
continue
# Create two columns for image and content
img_col, content_col = st.columns([1, 6])
# Display image in left column if available
if urlToImage:
with img_col:
st.markdown("""
<style>
.news-image-container {
width: 120px;
height: 120px;
overflow: hidden;
display: flex;
align-items: center;
justify-content: center;
border-radius: 8px;
margin: 8px;
margin-top: -16px;
}
.news-image-container img {
height: 100%;
width: auto;
object-fit: cover;
}
</style>
""", unsafe_allow_html=True)
st.markdown(f"""
<div class="news-image-container">
<img src="{urlToImage}" alt="News image">
</div>
""", unsafe_allow_html=True)
# Display title, summary, and link in right column
with content_col:
# Style based on sentiment
if sentiment.lower() == "positive":
st.success(f"**{title}**")
elif sentiment.lower() == "negative":
st.error(f"**{title}**")
else:
st.info(f"**{title}**")
# Truncate summary to one line (max 120 characters)
truncated_summary = summary[:120] + "..." if len(summary) > 120 else summary
st.write(truncated_summary)
if url:
st.write(f"[Read more]({url})")
top_articles_shown += 1
# Display remaining news articles in the expander
if len(state["news_analysis"]) > 2:
with st.expander("View More Market News"):
for i, news_item in enumerate(state["news_analysis"]):
if isinstance(news_item, dict) and i >= 2:
title = news_item.get("title", "")
summary = news_item.get("summary", "")
url = news_item.get("url", "")
urlToImage = news_item.get("urlToImage", "")
sentiment = news_item.get("sentiment", "neutral")
if not summary or summary == "No description available.":
continue
# Create two columns for image and content
img_col, content_col = st.columns([1, 6])
# Display image in left column if available
if urlToImage:
with img_col:
st.markdown("""
<style>
.news-image-container {
width: 120px;
height: 120px;
overflow: hidden;
display: flex;
align-items: center;
justify-content: center;
border-radius: 8px;
margin: 8px;
margin-top: -16px;
}
.news-image-container img {
height: 100%;
width: auto;
object-fit: cover;
}
</style>
""", unsafe_allow_html=True)
st.markdown(f"""
<div class="news-image-container">
<img src="{urlToImage}" alt="News image">
</div>
""", unsafe_allow_html=True)
# Display title, summary, and link in right column
with content_col:
# Style based on sentiment
if sentiment.lower() == "positive":
st.success(f"**{title}**")
elif sentiment.lower() == "negative":
st.error(f"**{title}**")
else:
st.info(f"**{title}**")
# Truncate summary to one line (max 120 characters)
truncated_summary = summary[:120] + "..." if len(summary) > 120 else summary
st.write(truncated_summary)
if url:
st.write(f"[Read more]({url})")
elif "portfolio_analysis" in state and state["portfolio_analysis"]:
progress_placeholder.progress(40, "Portfolio Analysis")
status_placeholder.info("Portfolio analysis complete. Gathering financial news...")
elif "technical_analysis" in state and state["technical_analysis"]:
progress_placeholder.progress(20, "Technical Analysis")
status_placeholder.info("Technical analysis complete. Analyzing portfolio...")
else:
progress_placeholder.progress(0, "Starting analysis...")
status_placeholder.info("Initializing technical analysis...")
return state
# Run the graph with progress tracking
graph = setup_graph_with_tracking(track_progress)
# Run the graph
final_state = graph.invoke(initial_state)
# Store the final state in session state
st.session_state.final_state = final_state
st.session_state.portfolio_analyzed = True
st.session_state.portfolio_data = portfolio_data
else:
# Use the stored final state
final_state = st.session_state.final_state
portfolio_data = st.session_state.portfolio_data
# Display the results
# Display the executive summary for the end user
#st.subheader("Your Investment Portfolio Analysis")
# if portfolio_data:
# st.subheader("Current valuation")
# # Create a dataframe for portfolio valuation
# valuation_data = []
# total_value = 0
# total_cost = 0
# for ticker, data in portfolio_data.items():
# current_value = data['value']
# purchase_value = data['purchase_price'] * data['shares']
# total_value += current_value
# total_cost += purchase_value
# valuation_data.append({
# 'Ticker': ticker,
# 'Shares': data['shares'],
# 'Purchase Price': f"${data['purchase_price']:.2f}",
# 'Current Price': f"${data['current_price']:.2f}",
# 'Cost Basis': f"${purchase_value:.2f}",
# 'Current Value': f"${current_value:.2f}",
# 'Gain/Loss ($)': f"${data['gain_loss']:.2f}",
# 'Gain/Loss (%)': f"{data['gain_loss_pct']:.2f}%"
# })
# # Calculate total gain/loss
# total_gain_loss = total_value - total_cost
# total_gain_loss_pct = (total_gain_loss / total_cost * 100) if total_cost > 0 else 0
# # Display the valuation table
# valuation_df = pd.DataFrame(valuation_data)
# st.dataframe(valuation_df, use_container_width=True)
# # Display portfolio valuations and allocations with gain/loss
# #if portfolio_data:
# # Create a better layout with metrics on the left and pie chart on the right
# st.subheader("Performance & allocation summary")
# # Create two columns for the layout with adjusted ratio
# left_col, right_col = st.columns([1, 1])
# # Left column: stacked metrics
# with left_col:
# cont_col, gap_col = st.columns([2, 1])
# with cont_col:
# # Add a bit of vertical space for alignment
# st.write("")
# # Total Portfolio Value metric
# st.metric("Total Portfolio Value", f"${total_value:.2f}", f"${total_gain_loss:.2f}", border=True)
# # Add some space between metrics
# st.write("")
# # Total Cost Basis metric
# st.metric("Total Cost Basis", f"${total_cost:.2f}", border=True)
# # Add some space between metrics
# st.write("")
# # Total Return metric
# st.metric("Total Return", f"{total_gain_loss_pct:.2f}%", border=True)
# with gap_col:
# st.markdown("")
# # Right column: pie chart
# with right_col:
# # Prepare data for pie chart
# st.markdown("")
# allocation_data = {}
# for ticker, data in portfolio_data.items():
# allocation_data[ticker] = data['value']
# # Create a figure for the pie chart
# fig, ax = plt.subplots(figsize=(4, 3.2))
# # Create the pie chart
# wedges, texts, autotexts = ax.pie(
# allocation_data.values(),
# labels=allocation_data.keys(),
# autopct='%1.1f%%',
# startangle=90,
# wedgeprops={'edgecolor': 'white'},
# textprops={'fontsize': 8}
# )
# # Equal aspect ratio ensures that pie is drawn as a circle
# ax.axis('equal')
# # Manually set font sizes
# plt.setp(autotexts, size=8, weight="bold")
# plt.setp(texts, size=8)
# # Add a title
# plt.title('Portfolio Allocation by Value', fontsize=10)
# # Use tight layout
# plt.tight_layout()
# # Display the pie chart
# st.pyplot(fig)
# Check if we have a final report
if "final_report" in final_state and final_state["final_report"]:
st.subheader("Portfolio analysis")
# Format and display the final report in a clean, professional way
report = final_state["final_report"]
#st.markdown(report)
# st.markdown(
# f"""
# <div style="background-color: #060F35;">
# {report}
# </div>
# """,
# unsafe_allow_html=True
# )
st.info(report)
else:
st.error("Unable to generate portfolio analysis. Please try again.")
# Display relevant news with links if available
#if "news_analysis" in final_state and final_state["news_analysis"]:
# if final_state["news_analysis"]:
# st.markdown("")
# st.subheader("Market news for your portfolio")
# # Display top two news articles outside the expander
# top_articles_shown = 0
# for i, news_item in enumerate(final_state["news_analysis"]):
# if isinstance(news_item, dict) and top_articles_shown < 2:
# title = news_item.get("title", "")
# summary = news_item.get("summary", "")
# url = news_item.get("url", "")
# urlToImage = news_item.get("urlToImage", "")
# sentiment = news_item.get("sentiment", "neutral")
# if not summary or summary == "No description available.":
# continue
# # Create two columns for image and content
# img_col, content_col = st.columns([1, 6])
# # Display image in left column if available
# if urlToImage:
# with img_col:
# st.markdown("""
# <style>
# .news-image-container {
# width: 120px;
# height: 120px;
# overflow: hidden;
# display: flex;
# align-items: center;
# justify-content: center;
# border-radius: 8px;
# margin: 8px;
# margin-top: -16px;
# }
# .news-image-container img {
# height: 100%;
# width: auto;
# object-fit: cover;
# }
# </style>
# """, unsafe_allow_html=True)
# st.markdown(f"""
# <div class="news-image-container">
# <img src="{urlToImage}" alt="News image">
# </div>
# """, unsafe_allow_html=True)
# # Display title, summary, and link in right column
# with content_col:
# # Style based on sentiment
# if sentiment.lower() == "positive":
# st.success(f"**{title}**")
# elif sentiment.lower() == "negative":
# st.error(f"**{title}**")
# else:
# st.info(f"**{title}**")
# # Truncate summary to one line (max 120 characters)
# truncated_summary = summary[:120] + "..." if len(summary) > 120 else summary
# st.write(truncated_summary)
# if url:
# st.write(f"[Read more]({url})")
# top_articles_shown += 1
# # Display remaining news articles in the expander
# if len(final_state["news_analysis"]) > 2:
# with st.expander("View More Market News"):
# for i, news_item in enumerate(final_state["news_analysis"]):
# if isinstance(news_item, dict) and i >= 2:
# title = news_item.get("title", "")
# summary = news_item.get("summary", "")
# url = news_item.get("url", "")
# urlToImage = news_item.get("urlToImage", "")
# sentiment = news_item.get("sentiment", "neutral")
# if not summary or summary == "No description available.":
# continue
# # Create two columns for image and content
# img_col, content_col = st.columns([1, 6])
# # Display image in left column if available
# if urlToImage:
# with img_col:
# st.markdown("""
# <style>
# .news-image-container {
# width: 120px;
# height: 120px;
# overflow: hidden;
# display: flex;
# align-items: center;
# justify-content: center;
# border-radius: 8px;
# margin: 8px;
# margin-top: -16px;
# }
# .news-image-container img {
# height: 100%;
# width: auto;
# object-fit: cover;
# }
# </style>
# """, unsafe_allow_html=True)
# st.markdown(f"""
# <div class="news-image-container">
# <img src="{urlToImage}" alt="News image">
# </div>
# """, unsafe_allow_html=True)
# # Display title, summary, and link in right column
# with content_col:
# # Style based on sentiment
# if sentiment.lower() == "positive":
# st.success(f"**{title}**")
# elif sentiment.lower() == "negative":
# st.error(f"**{title}**")
# else:
# st.info(f"**{title}**")
# # Truncate summary to one line (max 120 characters)
# truncated_summary = summary[:120] + "..." if len(summary) > 120 else summary
# st.write(truncated_summary)
# if url:
# st.write(f"[Read more]({url})")
# Display portfolio strengths and weaknesses
col1, col2 = st.columns(2)
print("yoyoyo")
print(final_state.get("technical_analysis"));
print(final_state.get("rag_context"));
print(final_state.get("fundamental_analysis"));
with col1:
st.subheader("Portfolio strengths")
strengths = final_state.get("portfolio_strengths", [])
if strengths:
for strength in strengths:
st.write(f"✅ {strength}")
else:
st.write("No specific strengths identified.")
with col2:
st.subheader("Areas for improvement")
weaknesses = final_state.get("portfolio_weaknesses", [])
if weaknesses:
for weakness in weaknesses:
st.write(f"⚠️ {weakness}")
else:
st.write("No specific areas for improvement identified.")
# Display allocation advice and risk assessment
st.subheader("Investment strategy")
allocation_advice = final_state.get("allocation_advice", "")
risk_assessment = final_state.get("risk_assessment", "")
if allocation_advice:
st.write(f"**Allocation advice:** {allocation_advice}")
if risk_assessment:
st.write(f"**Risk assessment:** {risk_assessment}")
# Display key recommendations in an easy-to-read format
if "recommendations" in final_state and final_state["recommendations"]:
st.subheader("Key recommendations")
# Create columns for recommendation cards
cols = st.columns(min(3, len(final_state["recommendations"])))
# Sort recommendations by priority (if available)
sorted_recommendations = sorted(
final_state["recommendations"],
key=lambda x: x.get("priority", 5)
)
# Display top recommendations in cards
for i, rec in enumerate(sorted_recommendations[:3]): # Show top 3 recommendations
with cols[i % 3]:
action = rec.get("action", "")
ticker = rec.get("ticker", "")
reasoning = rec.get("reasoning", "")
# Style based on action type
if action == "BUY":
st.success(f"**{action}: {ticker}**")
elif action == "SELL":
st.error(f"**{action}: {ticker}**")
else: # HOLD
st.info(f"**{action}: {ticker}**")
# Display reasoning with markdown formatting preserved
st.markdown(reasoning)
# If there are more than 3 recommendations, add a expander for the rest
if len(sorted_recommendations) > 3:
with st.expander("View all recommendations"):
for rec in sorted_recommendations[3:]:
action = rec.get("action", "")
ticker = rec.get("ticker", "")
reasoning = rec.get("reasoning", "")
# Style based on action type
if action == "BUY":
st.success(f"**{action}: {ticker}**")
elif action == "SELL":
st.error(f"**{action}: {ticker}**")
else: # HOLD
st.info(f"**{action}: {ticker}**")
# Display reasoning with markdown formatting preserved
st.markdown(reasoning)
st.divider()
# Add a second generate button for new investment recommendations
st.divider()
st.subheader("Next step: Discover new investment opportunities")
st.write("Click the button below to discover new investment opportunities that would complement your portfolio.")
if st.button("Generate New Investment Recommendations", key="new_inv_button"):
# Create a placeholder for the progress bar
new_inv_progress_placeholder = st.empty()
new_inv_status_placeholder = st.empty()
# Get portfolio data from session state
portfolio_data = st.session_state.portfolio_data
# Initialize the state with user inputs
initial_state2 = AgentState2(
portfolio_data=portfolio_data,
risk_level=risk_level,
investment_goals=investment_goals,
technical_analysis={},
news_analysis=[],
fundamental_analysis={},
high_rank_stocks=[],
new_stock_analysis={},
portfolio_fit={},
rag_context=None,
messages=[{
"role": "human",
"content": f"Please find new investment opportunities that complement my portfolio with risk level '{risk_level}' and investment goals: '{investment_goals}'."
}],
recommendations=[],
portfolio_strengths=[],
portfolio_weaknesses=[],
new_investments=[],
new_investment_summary="",
allocation_advice="",
risk_assessment="",
final_report=""
)
# Create a custom callback to track progress
def track_new_inv_progress(state):
# Simple progress tracking based on what's in the state
# Each node adds its output to the state, so we can use that to determine progress
# Check which stage we're at based on what's in the state
if "new_investments" in state and state["new_investments"]:
# Everything completed
new_inv_progress_placeholder.progress(100, "Complete")
new_inv_status_placeholder.success("Analysis complete!")
elif "portfolio_fit" in state and state["portfolio_fit"]:
# Portfolio Fit Evaluation completed
new_inv_progress_placeholder.progress(75, "Portfolio Fit Evaluation")
new_inv_status_placeholder.info("Portfolio fit evaluation complete. Generating investment recommendations...")
elif "new_stock_analysis" in state and state["new_stock_analysis"]:
# New Stock Analysis completed
new_inv_progress_placeholder.progress(50, "New Stock Analysis")
new_inv_status_placeholder.info("Technical analysis of new stocks complete. Evaluating portfolio fit...")
elif "high_rank_stocks" in state and state["high_rank_stocks"]:
# Zacks Analysis completed
new_inv_progress_placeholder.progress(25, "Finding High-Ranked Stocks")
new_inv_status_placeholder.info("Found high-ranked stocks. Analyzing technical indicators...")
else:
# Just starting
new_inv_progress_placeholder.progress(0, "Starting analysis...")
new_inv_status_placeholder.info("Searching for high-ranked stocks...")
return state
# Run the graph with progress tracking
new_inv_graph = setup_new_investments_graph(track_new_inv_progress)
# Initialize progress
new_inv_progress_placeholder.progress(0, "Starting analysis...")
new_inv_status_placeholder.info("Finding high-ranked stocks...")
# Run the graph
new_inv_final_state = new_inv_graph.invoke(initial_state2)
# Clear the progress indicators after completion
new_inv_progress_placeholder.empty()
new_inv_status_placeholder.empty()
# Display the new investment recommendations
st.subheader("New investment opportunities")
# Display the summary
new_investment_summary = new_inv_final_state.get("new_investment_summary", "")
if new_investment_summary:
st.write(new_investment_summary)
print(new_inv_final_state.get("new_stock_analysis"))
# Display the new investment recommendations
new_investments = new_inv_final_state.get("new_investments", [])
if new_investments:
print(new_investments)
# Sort recommendations by priority (lower number = higher priority)
sorted_investments = sorted(new_investments, key=lambda x: x.get("priority", 999) if isinstance(x, dict) else 999)
# Create a 3-column layout for recommendations
cols = st.columns(3)
# Display top recommendations
for i, inv in enumerate(sorted_investments):
if isinstance(inv, dict):
with cols[i % 3]:
action = inv.get("action", "")
ticker = inv.get("ticker", "")
reasoning = inv.get("reasoning", "")
# Style based on action type
if action == "BUY":
st.success(f"**{action}: {ticker}**")
elif action == "SELL":
st.error(f"**{action}: {ticker}**")
else: # HOLD
st.info(f"**{action}: {ticker}**")
# Display reasoning with markdown formatting preserved
st.markdown(reasoning)
else:
st.info("No new investment recommendations were generated. Please try again.")
else:
# Default display when app first loads
st.info("Enter your portfolio details and click 'Generate Recommendations' to get personalized investing research, summary, and analysis.")
|