Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
·
c887522
1
Parent(s):
a4be848
initial submit
Browse files- app.py +111 -127
- src/about.py +1 -1
- src/datamodel/__init__.py +0 -0
- src/datamodel/data.py +21 -0
- src/envs.py +8 -14
- src/submission/check_validity.py +3 -0
- src/submission/submit.py +61 -102
app.py
CHANGED
@@ -12,6 +12,8 @@ from src.about import (
|
|
12 |
LLM_BENCHMARKS_TEXT,
|
13 |
TITLE,
|
14 |
)
|
|
|
|
|
15 |
from src.display.css_html_js import custom_css
|
16 |
from src.display.utils import (
|
17 |
BENCHMARK_COLS,
|
@@ -24,69 +26,53 @@ from src.display.utils import (
|
|
24 |
WeightType,
|
25 |
Precision
|
26 |
)
|
27 |
-
from src.envs import API,
|
28 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
29 |
-
from src.submission.submit import
|
30 |
|
31 |
|
32 |
def restart_space():
|
33 |
API.restart_space(repo_id=REPO_ID)
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
75 |
-
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
76 |
-
ColumnFilter(
|
77 |
-
AutoEvalColumn.params.name,
|
78 |
-
type="slider",
|
79 |
-
min=0.01,
|
80 |
-
max=150,
|
81 |
-
label="Select the number of parameters (B)",
|
82 |
-
),
|
83 |
-
ColumnFilter(
|
84 |
-
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
|
85 |
-
),
|
86 |
-
],
|
87 |
-
bool_checkboxgroup_label="Hide models",
|
88 |
-
interactive=False,
|
89 |
-
)
|
90 |
|
91 |
|
92 |
demo = gr.Blocks(css=custom_css)
|
@@ -95,8 +81,8 @@ with demo:
|
|
95 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
96 |
|
97 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
98 |
-
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
99 |
-
|
100 |
|
101 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
102 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
@@ -106,84 +92,82 @@ with demo:
|
|
106 |
with gr.Row():
|
107 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
108 |
|
109 |
-
with gr.Column():
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
with gr.Row():
|
145 |
-
gr.Markdown("# ✉️✨ Submit your
|
146 |
|
147 |
with gr.Row():
|
148 |
with gr.Column():
|
149 |
-
|
150 |
-
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
151 |
-
model_type = gr.Dropdown(
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
)
|
158 |
|
159 |
with gr.Column():
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
175 |
|
176 |
submit_button = gr.Button("Submit Eval")
|
177 |
submission_result = gr.Markdown()
|
178 |
submit_button.click(
|
179 |
-
|
180 |
[
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
precision,
|
185 |
-
weight_type,
|
186 |
-
model_type,
|
187 |
],
|
188 |
submission_result,
|
189 |
)
|
@@ -201,4 +185,4 @@ with demo:
|
|
201 |
scheduler = BackgroundScheduler()
|
202 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
203 |
scheduler.start()
|
204 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
12 |
LLM_BENCHMARKS_TEXT,
|
13 |
TITLE,
|
14 |
)
|
15 |
+
from src.datamodel.data import F1Data
|
16 |
+
|
17 |
from src.display.css_html_js import custom_css
|
18 |
from src.display.utils import (
|
19 |
BENCHMARK_COLS,
|
|
|
26 |
WeightType,
|
27 |
Precision
|
28 |
)
|
29 |
+
from src.envs import API, REPO_ID, TOKEN, CODE_PROBLEMS_REPO, SUBMISSIONS_REPO, RESULTS_REPO
|
30 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
31 |
+
from src.submission.submit import add_new_solutions
|
32 |
|
33 |
|
34 |
def restart_space():
|
35 |
API.restart_space(repo_id=REPO_ID)
|
36 |
|
37 |
+
lbdb = F1Data(cp_ds_name=CODE_PROBLEMS_REPO, sub_ds_name=SUBMISSIONS_REPO, res_ds_name=RESULTS_REPO)
|
38 |
+
|
39 |
+
|
40 |
+
# (
|
41 |
+
# finished_eval_queue_df,
|
42 |
+
# running_eval_queue_df,
|
43 |
+
# pending_eval_queue_df,
|
44 |
+
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
45 |
+
|
46 |
+
# def init_leaderboard(dataframe):
|
47 |
+
# if dataframe is None or dataframe.empty:
|
48 |
+
# raise ValueError("Leaderboard DataFrame is empty or None.")
|
49 |
+
# return Leaderboard(
|
50 |
+
# value=dataframe,
|
51 |
+
# datatype=[c.type for c in fields(AutoEvalColumn)],
|
52 |
+
# select_columns=SelectColumns(
|
53 |
+
# default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
|
54 |
+
# cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
55 |
+
# label="Select Columns to Display:",
|
56 |
+
# ),
|
57 |
+
# search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
58 |
+
# hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
59 |
+
# filter_columns=[
|
60 |
+
# ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
61 |
+
# ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
62 |
+
# ColumnFilter(
|
63 |
+
# AutoEvalColumn.params.name,
|
64 |
+
# type="slider",
|
65 |
+
# min=0.01,
|
66 |
+
# max=150,
|
67 |
+
# label="Select the number of parameters (B)",
|
68 |
+
# ),
|
69 |
+
# ColumnFilter(
|
70 |
+
# AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
|
71 |
+
# ),
|
72 |
+
# ],
|
73 |
+
# bool_checkboxgroup_label="Hide models",
|
74 |
+
# interactive=False,
|
75 |
+
# )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
|
78 |
demo = gr.Blocks(css=custom_css)
|
|
|
81 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
82 |
|
83 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
84 |
+
# with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
85 |
+
# leaderboard = init_leaderboard(LEADERBOARD_DF)
|
86 |
|
87 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
88 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
|
|
92 |
with gr.Row():
|
93 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
94 |
|
95 |
+
# with gr.Column():
|
96 |
+
# with gr.Accordion(
|
97 |
+
# f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
98 |
+
# open=False,
|
99 |
+
# ):
|
100 |
+
# with gr.Row():
|
101 |
+
# finished_eval_table = gr.components.Dataframe(
|
102 |
+
# value=finished_eval_queue_df,
|
103 |
+
# headers=EVAL_COLS,
|
104 |
+
# datatype=EVAL_TYPES,
|
105 |
+
# row_count=5,
|
106 |
+
# )
|
107 |
+
# with gr.Accordion(
|
108 |
+
# f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
109 |
+
# open=False,
|
110 |
+
# ):
|
111 |
+
# with gr.Row():
|
112 |
+
# running_eval_table = gr.components.Dataframe(
|
113 |
+
# value=running_eval_queue_df,
|
114 |
+
# headers=EVAL_COLS,
|
115 |
+
# datatype=EVAL_TYPES,
|
116 |
+
# row_count=5,
|
117 |
+
# )
|
118 |
+
|
119 |
+
# with gr.Accordion(
|
120 |
+
# f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
121 |
+
# open=False,
|
122 |
+
# ):
|
123 |
+
# with gr.Row():
|
124 |
+
# pending_eval_table = gr.components.Dataframe(
|
125 |
+
# value=pending_eval_queue_df,
|
126 |
+
# headers=EVAL_COLS,
|
127 |
+
# datatype=EVAL_TYPES,
|
128 |
+
# row_count=5,
|
129 |
+
# )
|
130 |
with gr.Row():
|
131 |
+
gr.Markdown("# ✉️✨ Submit your sulutions here!", elem_classes="markdown-text")
|
132 |
|
133 |
with gr.Row():
|
134 |
with gr.Column():
|
135 |
+
submitter_textbox = gr.Textbox(label="Submitter")
|
136 |
+
# revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
137 |
+
# model_type = gr.Dropdown(
|
138 |
+
# choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
139 |
+
# label="Model type",
|
140 |
+
# multiselect=False,
|
141 |
+
# value=None,
|
142 |
+
# interactive=True,
|
143 |
+
# )
|
144 |
|
145 |
with gr.Column():
|
146 |
+
submission_file = gr.File(label="JSONL solutions file", file_types=[".jsonl"])
|
147 |
+
# precision = gr.Dropdown(
|
148 |
+
# choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
149 |
+
# label="Precision",
|
150 |
+
# multiselect=False,
|
151 |
+
# value="float16",
|
152 |
+
# interactive=True,
|
153 |
+
# )
|
154 |
+
# weight_type = gr.Dropdown(
|
155 |
+
# choices=[i.value.name for i in WeightType],
|
156 |
+
# label="Weights type",
|
157 |
+
# multiselect=False,
|
158 |
+
# value="Original",
|
159 |
+
# interactive=True,
|
160 |
+
# )
|
161 |
+
# base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
162 |
|
163 |
submit_button = gr.Button("Submit Eval")
|
164 |
submission_result = gr.Markdown()
|
165 |
submit_button.click(
|
166 |
+
add_new_solutions,
|
167 |
[
|
168 |
+
lbdb,
|
169 |
+
submitter_textbox,
|
170 |
+
submission_file,
|
|
|
|
|
|
|
171 |
],
|
172 |
submission_result,
|
173 |
)
|
|
|
185 |
scheduler = BackgroundScheduler()
|
186 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
187 |
scheduler.start()
|
188 |
+
demo.queue(default_concurrency_limit=40).launch()
|
src/about.py
CHANGED
@@ -21,7 +21,7 @@ NUM_FEWSHOT = 0 # Change with your few shot
|
|
21 |
|
22 |
|
23 |
# Your leaderboard name
|
24 |
-
TITLE = """<h1 align="center" id="space-title">
|
25 |
|
26 |
# What does your leaderboard evaluate?
|
27 |
INTRODUCTION_TEXT = """
|
|
|
21 |
|
22 |
|
23 |
# Your leaderboard name
|
24 |
+
TITLE = """<h1 align="center" id="space-title">AAI FormulaOne Leaderboard</h1>"""
|
25 |
|
26 |
# What does your leaderboard evaluate?
|
27 |
INTRODUCTION_TEXT = """
|
src/datamodel/__init__.py
ADDED
File without changes
|
src/datamodel/data.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
|
3 |
+
from datasets import load_dataset
|
4 |
+
|
5 |
+
class F1Data:
|
6 |
+
def __init__(self, cp_ds_name: str, sub_ds_name: str, res_ds_name: str):
|
7 |
+
self.cp_dataset_name = cp_ds_name
|
8 |
+
self.submissions_dataset_name = sub_ds_name
|
9 |
+
self.results_dataset_name = res_ds_name
|
10 |
+
self.initialize()
|
11 |
+
|
12 |
+
@functools.cached_property
|
13 |
+
def code_problem_formulas(self) -> set[str]:
|
14 |
+
return set(self.code_problems.keys())
|
15 |
+
|
16 |
+
def initialize(self):
|
17 |
+
cp_ds = load_dataset(self.cp_dataset_name, split="hard")
|
18 |
+
self.code_problems: dict[str, str] = {r["formula_name"]: r["code_problem"]["problem_description"] for r in cp_ds}
|
19 |
+
|
20 |
+
def add_submission(self, submitter: str, submission_path: str):
|
21 |
+
pass
|
src/envs.py
CHANGED
@@ -2,24 +2,18 @@ import os
|
|
2 |
|
3 |
from huggingface_hub import HfApi
|
4 |
|
5 |
-
|
6 |
-
# ----------------------------------
|
7 |
-
TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
|
8 |
|
9 |
-
OWNER = "
|
10 |
-
# ----------------------------------
|
11 |
|
12 |
-
REPO_ID = f"{OWNER}/
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
15 |
|
16 |
# If you setup a cache later, just change HF_HOME
|
17 |
CACHE_PATH=os.getenv("HF_HOME", ".")
|
18 |
|
19 |
-
# Local caches
|
20 |
-
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
21 |
-
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
|
22 |
-
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
|
23 |
-
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
|
24 |
-
|
25 |
API = HfApi(token=TOKEN)
|
|
|
2 |
|
3 |
from huggingface_hub import HfApi
|
4 |
|
5 |
+
TOKEN = os.environ.get("HF_TOKEN")
|
|
|
|
|
6 |
|
7 |
+
OWNER = "double-ai"
|
|
|
8 |
|
9 |
+
REPO_ID = f"{OWNER}/FormulaOne-Leaderboard"
|
10 |
+
|
11 |
+
# Datasets
|
12 |
+
CODE_PROBLEMS_REPO = f"{OWNER}/dev-f1-dataset"
|
13 |
+
SUBMISSIONS_REPO = f"{OWNER}/dev-f1-leaderboard-submissions"
|
14 |
+
RESULTS_REPO = f"{OWNER}/dev-f1-leaderboard-results"
|
15 |
|
16 |
# If you setup a cache later, just change HF_HOME
|
17 |
CACHE_PATH=os.getenv("HF_HOME", ".")
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
API = HfApi(token=TOKEN)
|
src/submission/check_validity.py
CHANGED
@@ -4,12 +4,15 @@ import re
|
|
4 |
from collections import defaultdict
|
5 |
from datetime import datetime, timedelta, timezone
|
6 |
|
|
|
7 |
import huggingface_hub
|
8 |
from huggingface_hub import ModelCard
|
9 |
from huggingface_hub.hf_api import ModelInfo
|
10 |
from transformers import AutoConfig
|
11 |
from transformers.models.auto.tokenization_auto import AutoTokenizer
|
12 |
|
|
|
|
|
13 |
def check_model_card(repo_id: str) -> tuple[bool, str]:
|
14 |
"""Checks if the model card and license exist and have been filled"""
|
15 |
try:
|
|
|
4 |
from collections import defaultdict
|
5 |
from datetime import datetime, timedelta, timezone
|
6 |
|
7 |
+
from datasets import get_dataset_config_names
|
8 |
import huggingface_hub
|
9 |
from huggingface_hub import ModelCard
|
10 |
from huggingface_hub.hf_api import ModelInfo
|
11 |
from transformers import AutoConfig
|
12 |
from transformers.models.auto.tokenization_auto import AutoTokenizer
|
13 |
|
14 |
+
from src.envs import SUBMISSIONS_REPO
|
15 |
+
|
16 |
def check_model_card(repo_id: str) -> tuple[bool, str]:
|
17 |
"""Checks if the model card and license exist and have been filled"""
|
18 |
try:
|
src/submission/submit.py
CHANGED
@@ -1,118 +1,77 @@
|
|
1 |
import json
|
2 |
import os
|
3 |
from datetime import datetime, timezone
|
|
|
4 |
|
5 |
-
|
6 |
-
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
|
7 |
-
from src.submission.check_validity import (
|
8 |
-
already_submitted_models,
|
9 |
-
check_model_card,
|
10 |
-
get_model_size,
|
11 |
-
is_model_on_hub,
|
12 |
-
)
|
13 |
-
|
14 |
-
REQUESTED_MODELS = None
|
15 |
-
USERS_TO_SUBMISSION_DATES = None
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
):
|
25 |
-
|
26 |
-
|
27 |
-
if not REQUESTED_MODELS:
|
28 |
-
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
|
29 |
-
|
30 |
-
user_name = ""
|
31 |
-
model_path = model
|
32 |
-
if "/" in model:
|
33 |
-
user_name = model.split("/")[0]
|
34 |
-
model_path = model.split("/")[1]
|
35 |
-
|
36 |
-
precision = precision.split(" ")[0]
|
37 |
-
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
38 |
|
39 |
-
if
|
40 |
-
return styled_error("Please
|
41 |
|
42 |
-
# Does the model actually exist?
|
43 |
-
if revision == "":
|
44 |
-
revision = "main"
|
45 |
-
|
46 |
-
# Is the model on the hub?
|
47 |
-
if weight_type in ["Delta", "Adapter"]:
|
48 |
-
base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
|
49 |
-
if not base_model_on_hub:
|
50 |
-
return styled_error(f'Base model "{base_model}" {error}')
|
51 |
-
|
52 |
-
if not weight_type == "Adapter":
|
53 |
-
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
|
54 |
-
if not model_on_hub:
|
55 |
-
return styled_error(f'Model "{model}" {error}')
|
56 |
-
|
57 |
-
# Is the model info correctly filled?
|
58 |
try:
|
59 |
-
|
60 |
-
except Exception:
|
61 |
-
return styled_error("
|
62 |
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
|
66 |
-
try:
|
67 |
-
license = model_info.cardData["license"]
|
68 |
-
except Exception:
|
69 |
-
return styled_error("Please select a license for your model")
|
70 |
-
|
71 |
-
modelcard_OK, error_msg = check_model_card(model)
|
72 |
-
if not modelcard_OK:
|
73 |
-
return styled_error(error_msg)
|
74 |
|
75 |
# Seems good, creating the eval
|
76 |
-
print("Adding new
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
"
|
81 |
-
"
|
82 |
-
"
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
#
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
API.upload_file(
|
107 |
-
path_or_fileobj=out_path,
|
108 |
-
path_in_repo=out_path.split("eval-queue/")[1],
|
109 |
-
repo_id=QUEUE_REPO,
|
110 |
-
repo_type="dataset",
|
111 |
-
commit_message=f"Add {model} to eval queue",
|
112 |
-
)
|
113 |
-
|
114 |
-
# Remove the local file
|
115 |
-
os.remove(out_path)
|
116 |
|
117 |
return styled_message(
|
118 |
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
|
|
|
1 |
import json
|
2 |
import os
|
3 |
from datetime import datetime, timezone
|
4 |
+
import time
|
5 |
|
6 |
+
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
from src.datamodel.data import F1Data
|
9 |
+
from src.display.formatting import styled_error, styled_message, styled_warning
|
10 |
+
from src.envs import API, SUBMISSIONS_REPO, TOKEN
|
11 |
+
# from src.submission.check_validity import (
|
12 |
+
# already_submitted_models,
|
13 |
+
# check_model_card,
|
14 |
+
# get_model_size,
|
15 |
+
# is_model_on_hub,
|
16 |
+
# )
|
17 |
+
|
18 |
+
def add_new_solutions(
|
19 |
+
lbdb: F1Data,
|
20 |
+
submitter: str,
|
21 |
+
submission_path: str,
|
22 |
):
|
23 |
+
if not submitter:
|
24 |
+
return styled_error("Please fill submitter name")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
if not submission_path:
|
27 |
+
return styled_error("Please upload JSONL solutions file")
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
try:
|
30 |
+
ds = pd.read_json(submission_path, lines=True)
|
31 |
+
except Exception as e:
|
32 |
+
return styled_error(f"Cannot read uploaded JSONL file: {str(e)}")
|
33 |
|
34 |
+
submitted_formulas = set(ds["formula_name"])
|
35 |
+
if submitted_formulas != lbdb.code_problem_formulas:
|
36 |
+
missing = lbdb.code_problem_formulas - submitted_formulas
|
37 |
+
unknown = submitted_formulas - lbdb.code_problem_formulas
|
38 |
+
return styled_error(f"Mismatched formula names: missing {len(missing)} unknown {len(unknown)}")
|
39 |
+
if len(ds) > len(lbdb.code_problem_formulas):
|
40 |
+
return styled_error("Duplicate formula solutions exist in uploaded file")
|
41 |
|
42 |
+
submission_id = datetime.now().strftime("%Y%m%d%H%M%S")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
# Seems good, creating the eval
|
45 |
+
print(f"Adding new submission {submission_id} from {submitter}")
|
46 |
+
submission_ts = time.time_ns()
|
47 |
+
|
48 |
+
def add_info(row):
|
49 |
+
row["submitter"] = submitter
|
50 |
+
row["submission_id"] = submission_id
|
51 |
+
row["submission_ts"] = submission_ts
|
52 |
+
|
53 |
+
ds = ds.map(add_info)
|
54 |
+
|
55 |
+
ds.push_to_hub(SUBMISSIONS_REPO, submission_id, private=True)
|
56 |
+
# print("Creating eval file")
|
57 |
+
# OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
58 |
+
# os.makedirs(OUT_DIR, exist_ok=True)
|
59 |
+
# out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
|
60 |
+
|
61 |
+
# with open(out_path, "w") as f:
|
62 |
+
# f.write(json.dumps(eval_entry))
|
63 |
+
|
64 |
+
# print("Uploading eval file")
|
65 |
+
# API.upload_file(
|
66 |
+
# path_or_fileobj=out_path,
|
67 |
+
# path_in_repo=out_path.split("eval-queue/")[1],
|
68 |
+
# repo_id=QUEUE_REPO,
|
69 |
+
# repo_type="dataset",
|
70 |
+
# commit_message=f"Add {model} to eval queue",
|
71 |
+
# )
|
72 |
+
|
73 |
+
# # Remove the local file
|
74 |
+
# os.remove(out_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
return styled_message(
|
77 |
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
|