Spaces:
Sleeping
Sleeping
Commit
·
05e5c9d
1
Parent(s):
eb81225
main.py
CHANGED
@@ -14,9 +14,10 @@ CORS(app)
|
|
14 |
cudaOrNah = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
print(cudaOrNah)
|
16 |
|
17 |
-
# Global model setup
|
18 |
-
#
|
19 |
-
#
|
|
|
20 |
checkpoint = "sam_vit_l_0b3195.pth"
|
21 |
model_type = "vit_l"
|
22 |
sam = sam_model_registry[model_type](checkpoint=checkpoint)
|
@@ -29,7 +30,7 @@ print('Setup SAM model')
|
|
29 |
|
30 |
@app.route('/')
|
31 |
def hello():
|
32 |
-
return {"hei": "Shredded to
|
33 |
|
34 |
@app.route('/health', methods=['GET'])
|
35 |
def health_check():
|
@@ -39,45 +40,27 @@ def health_check():
|
|
39 |
@app.route('/get-masks', methods=['POST'])
|
40 |
def get_masks():
|
41 |
try:
|
42 |
-
print('
|
43 |
# Get the image file from the request
|
44 |
if 'image' not in request.files:
|
45 |
return jsonify({"error": "No image file provided"}), 400
|
46 |
-
|
47 |
image_file = request.files['image']
|
48 |
if image_file.filename == '':
|
49 |
return jsonify({"error": "No image file provided"}), 400
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
# Load the image with alpha channel to preserve transparency
|
54 |
-
raw_image = Image.open(image_file).convert("RGBA")
|
55 |
-
# Convert the PIL Image to a NumPy array (shape: H x W x 4)
|
56 |
image_array = np.array(raw_image)
|
57 |
-
|
58 |
-
# Extract the alpha channel to create a transparency mask
|
59 |
-
alpha_channel = image_array[:, :, 3]
|
60 |
-
transparency_mask = alpha_channel > 0 # True where pixel is opaque
|
61 |
-
|
62 |
-
# Apply the transparency mask to the RGB channels
|
63 |
-
# Set transparent pixels to black (or any background color)
|
64 |
-
image_array[~transparency_mask, :3] = [0, 0, 0]
|
65 |
-
|
66 |
-
# Discard the alpha channel as it's no longer needed
|
67 |
-
image_array = image_array[:, :, :3]
|
68 |
-
|
69 |
-
# Since OpenCV expects BGR format, convert RGB to BGR
|
70 |
image = image_array[:, :, ::-1]
|
71 |
|
72 |
-
# **Modified Section Ends Here**
|
73 |
-
|
74 |
if image is None:
|
75 |
raise ValueError("Image not found or unable to read.")
|
76 |
-
|
77 |
if cudaOrNah == "cuda":
|
78 |
torch.cuda.empty_cache()
|
79 |
-
|
80 |
-
# Generate masks using the preprocessed image
|
81 |
masks = mask_generator.generate(image)
|
82 |
|
83 |
if cudaOrNah == "cuda":
|
@@ -85,23 +68,28 @@ def get_masks():
|
|
85 |
|
86 |
masks = sorted(masks, key=(lambda x: x['area']), reverse=True)
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
not_small_mask = np.logical_not(masks[j]['segmentation'])
|
93 |
-
masks[i]['segmentation'] = np.logical_and(large_mask, not_small_mask)
|
94 |
-
masks[i]['area'] = masks[i]['segmentation'].sum()
|
95 |
-
large_mask = masks[i]['segmentation']
|
96 |
|
97 |
-
|
98 |
-
def sum_under_threshold(segmentation, threshold):
|
99 |
-
return segmentation.sum() / segmentation.size < threshold
|
100 |
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
masks = sorted(masks, key=(lambda x: x['area']), reverse=True)
|
103 |
|
104 |
-
# Create a zip file in memory
|
105 |
zip_buffer = io.BytesIO()
|
106 |
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
|
107 |
for idx, mask in enumerate(masks):
|
@@ -110,10 +98,10 @@ def get_masks():
|
|
110 |
mask_io = io.BytesIO()
|
111 |
mask_image.save(mask_io, format="PNG")
|
112 |
mask_io.seek(0)
|
113 |
-
zip_file.writestr(f'mask_{idx
|
114 |
|
115 |
zip_buffer.seek(0)
|
116 |
-
|
117 |
return send_file(zip_buffer, mimetype='application/zip', as_attachment=True, download_name='masks.zip')
|
118 |
except Exception as e:
|
119 |
# Log the error message if needed
|
@@ -122,4 +110,4 @@ def get_masks():
|
|
122 |
return jsonify({"error": "Error processing the image", "details": str(e)}), 400
|
123 |
|
124 |
if __name__ == '__main__':
|
125 |
-
app.run(debug=True)
|
|
|
14 |
cudaOrNah = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
print(cudaOrNah)
|
16 |
|
17 |
+
# Global model setup
|
18 |
+
# running out of memory adjusted
|
19 |
+
# checkpoint = "sam_vit_h_4b8939.pth"
|
20 |
+
# model_type = "vit_h"
|
21 |
checkpoint = "sam_vit_l_0b3195.pth"
|
22 |
model_type = "vit_l"
|
23 |
sam = sam_model_registry[model_type](checkpoint=checkpoint)
|
|
|
30 |
|
31 |
@app.route('/')
|
32 |
def hello():
|
33 |
+
return {"hei": "Shredded to peices"}
|
34 |
|
35 |
@app.route('/health', methods=['GET'])
|
36 |
def health_check():
|
|
|
40 |
@app.route('/get-masks', methods=['POST'])
|
41 |
def get_masks():
|
42 |
try:
|
43 |
+
print('received image from frontend')
|
44 |
# Get the image file from the request
|
45 |
if 'image' not in request.files:
|
46 |
return jsonify({"error": "No image file provided"}), 400
|
47 |
+
|
48 |
image_file = request.files['image']
|
49 |
if image_file.filename == '':
|
50 |
return jsonify({"error": "No image file provided"}), 400
|
51 |
|
52 |
+
raw_image = Image.open(image_file).convert("RGB")
|
53 |
+
# Convert the PIL Image to a NumPy array
|
|
|
|
|
|
|
54 |
image_array = np.array(raw_image)
|
55 |
+
# Since OpenCV expects BGR, convert RGB to BGR
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
image = image_array[:, :, ::-1]
|
57 |
|
|
|
|
|
58 |
if image is None:
|
59 |
raise ValueError("Image not found or unable to read.")
|
60 |
+
|
61 |
if cudaOrNah == "cuda":
|
62 |
torch.cuda.empty_cache()
|
63 |
+
|
|
|
64 |
masks = mask_generator.generate(image)
|
65 |
|
66 |
if cudaOrNah == "cuda":
|
|
|
68 |
|
69 |
masks = sorted(masks, key=(lambda x: x['area']), reverse=True)
|
70 |
|
71 |
+
def is_background(segmentation):
|
72 |
+
val = (segmentation[10, 10] or segmentation[-10, 10] or
|
73 |
+
segmentation[10, -10] or segmentation[-10, -10])
|
74 |
+
return val
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
masks = [mask for mask in masks if not is_background(mask['segmentation'])]
|
|
|
|
|
77 |
|
78 |
+
# for i in range(0, len(masks) - 1)[::-1]:
|
79 |
+
# large_mask = masks[i]['segmentation']
|
80 |
+
# for j in range(i+1, len(masks)):
|
81 |
+
# not_small_mask = np.logical_not(masks[j]['segmentation'])
|
82 |
+
# masks[i]['segmentation'] = np.logical_and(large_mask, not_small_mask)
|
83 |
+
# masks[i]['area'] = masks[i]['segmentation'].sum()
|
84 |
+
# large_mask = masks[i]['segmentation']
|
85 |
+
|
86 |
+
# def sum_under_threshold(segmentation, threshold):
|
87 |
+
# return segmentation.sum() / segmentation.size < 0.0015
|
88 |
+
|
89 |
+
# masks = [mask for mask in masks if not sum_under_threshold(mask['segmentation'], 100)]
|
90 |
masks = sorted(masks, key=(lambda x: x['area']), reverse=True)
|
91 |
|
92 |
+
# Create a zip file in memory
|
93 |
zip_buffer = io.BytesIO()
|
94 |
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
|
95 |
for idx, mask in enumerate(masks):
|
|
|
98 |
mask_io = io.BytesIO()
|
99 |
mask_image.save(mask_io, format="PNG")
|
100 |
mask_io.seek(0)
|
101 |
+
zip_file.writestr(f'mask_{idx+1}.png', mask_io.read())
|
102 |
|
103 |
zip_buffer.seek(0)
|
104 |
+
|
105 |
return send_file(zip_buffer, mimetype='application/zip', as_attachment=True, download_name='masks.zip')
|
106 |
except Exception as e:
|
107 |
# Log the error message if needed
|
|
|
110 |
return jsonify({"error": "Error processing the image", "details": str(e)}), 400
|
111 |
|
112 |
if __name__ == '__main__':
|
113 |
+
app.run(debug=True)
|