Spaces:
Sleeping
Sleeping
Commit
·
60e5cfd
1
Parent(s):
7ebb0f0
main update
Browse files
main.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, send_file, Response, jsonify
|
2 |
+
from flask_cors import CORS
|
3 |
+
import numpy as np
|
4 |
+
import io
|
5 |
+
import torch
|
6 |
+
import cv2
|
7 |
+
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
|
8 |
+
from PIL import Image
|
9 |
+
import zipfile
|
10 |
+
|
11 |
+
app = Flask(__name__)
|
12 |
+
CORS(app)
|
13 |
+
|
14 |
+
cudaOrNah = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
print(cudaOrNah)
|
16 |
+
|
17 |
+
# Global model setup
|
18 |
+
checkpoint = "sam_vit_h_4b8939.pth"
|
19 |
+
model_type = "vit_h"
|
20 |
+
sam = sam_model_registry[model_type](checkpoint=checkpoint)
|
21 |
+
sam.to(device=cudaOrNah)
|
22 |
+
mask_generator = SamAutomaticMaskGenerator(
|
23 |
+
model=sam,
|
24 |
+
min_mask_region_area=0.0015 # Adjust this value as needed
|
25 |
+
)
|
26 |
+
print('Setup SAM model')
|
27 |
+
|
28 |
+
@app.route('/')
|
29 |
+
def hello():
|
30 |
+
return {"hei": "Malevolent Shrine :D"}
|
31 |
+
|
32 |
+
@app.route('/health', methods=['GET'])
|
33 |
+
def health_check():
|
34 |
+
# Simple health check endpoint
|
35 |
+
return jsonify({"status": "ok"}), 200
|
36 |
+
|
37 |
+
@app.route('/get-masks', methods=['POST'])
|
38 |
+
def get_masks():
|
39 |
+
try:
|
40 |
+
print('received image from frontend')
|
41 |
+
# Get the image file from the request
|
42 |
+
if 'image' not in request.files:
|
43 |
+
return jsonify({"error": "No image file provided"}), 400
|
44 |
+
|
45 |
+
image_file = request.files['image']
|
46 |
+
if image_file.filename == '':
|
47 |
+
return jsonify({"error": "No image file provided"}), 400
|
48 |
+
|
49 |
+
raw_image = Image.open(image_file).convert("RGB")
|
50 |
+
# Convert the PIL Image to a NumPy array
|
51 |
+
image_array = np.array(raw_image)
|
52 |
+
# Since OpenCV expects BGR, convert RGB to BGR
|
53 |
+
image = image_array[:, :, ::-1]
|
54 |
+
|
55 |
+
if image is None:
|
56 |
+
raise ValueError("Image not found or unable to read.")
|
57 |
+
|
58 |
+
masks = mask_generator.generate(image)
|
59 |
+
masks = sorted(masks, key=(lambda x: x['area']), reverse=True)
|
60 |
+
|
61 |
+
def is_background(segmentation):
|
62 |
+
val = (segmentation[10, 10] or segmentation[-10, 10] or
|
63 |
+
segmentation[10, -10] or segmentation[-10, -10])
|
64 |
+
return val
|
65 |
+
|
66 |
+
masks = [mask for mask in masks if not is_background(mask['segmentation'])]
|
67 |
+
|
68 |
+
for i in range(0, len(masks) - 1)[::-1]:
|
69 |
+
large_mask = masks[i]['segmentation']
|
70 |
+
for j in range(i+1, len(masks)):
|
71 |
+
not_small_mask = np.logical_not(masks[j]['segmentation'])
|
72 |
+
masks[i]['segmentation'] = np.logical_and(large_mask, not_small_mask)
|
73 |
+
masks[i]['area'] = masks[i]['segmentation'].sum()
|
74 |
+
large_mask = masks[i]['segmentation']
|
75 |
+
|
76 |
+
def sum_under_threshold(segmentation, threshold):
|
77 |
+
return segmentation.sum() / segmentation.size < 0.0015
|
78 |
+
|
79 |
+
masks = [mask for mask in masks if not sum_under_threshold(mask['segmentation'], 100)]
|
80 |
+
masks = sorted(masks, key=(lambda x: x['area']), reverse=True)
|
81 |
+
|
82 |
+
# Create a zip file in memory
|
83 |
+
zip_buffer = io.BytesIO()
|
84 |
+
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
|
85 |
+
for idx, mask in enumerate(masks):
|
86 |
+
alpha = mask['segmentation'].astype('uint8') * 255
|
87 |
+
mask_image = Image.fromarray(alpha)
|
88 |
+
mask_io = io.BytesIO()
|
89 |
+
mask_image.save(mask_io, format="PNG")
|
90 |
+
mask_io.seek(0)
|
91 |
+
zip_file.writestr(f'mask_{idx+1}.png', mask_io.read())
|
92 |
+
|
93 |
+
zip_buffer.seek(0)
|
94 |
+
|
95 |
+
return send_file(zip_buffer, mimetype='application/zip', as_attachment=True, download_name='masks.zip')
|
96 |
+
except Exception as e:
|
97 |
+
# Log the error message if needed
|
98 |
+
print(f"Error processing the image: {e}")
|
99 |
+
# Return a JSON response with the error message and a 400 Bad Request status
|
100 |
+
return jsonify({"error": "Error processing the image", "details": str(e)}), 400
|
101 |
+
|
102 |
+
if __name__ == '__main__':
|
103 |
+
app.run(debug=True)
|