File size: 772 Bytes
f48b8b0
1ff8dbd
7f6bab7
5a42448
e9cd1d1
f48b8b0
 
d6e00ed
f48b8b0
e9cd1d1
7f6bab7
5a42448
749b55f
 
e9cd1d1
7f6bab7
 
 
 
749b55f
 
1ff8dbd
749b55f
726d8ee
749b55f
5a42448
1ff8dbd
e9cd1d1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import os
from flask import Flask, jsonify, request
from flask_cors import CORS
from transformers import pipeline

# Set the cache directory to a location with write permissions
os.environ['TRANSFORMERS_CACHE'] = './transformers_cache'
os.environ['HF_HOME'] = './transformers_cache'

app = Flask(__name__)
CORS(app)

# Load the sentiment-analysis pipeline from Hugging Face
sentiment_analyzer = pipeline('sentiment-analysis')

@app.route('/')
def hello():
    return {"Goes Wrong": "Keeping it real"}

@app.route('/analyze', methods=['GET'])
def analyze():
    sentence = request.args.get('sentence', default='hey there', type=str)
    result = sentiment_analyzer(sentence)
    print(result)
    return jsonify(result)


if __name__ == '__main__':
    app.run(debug=True)