Spaces:
Runtime error
Runtime error
Commit
·
781570f
1
Parent(s):
80b3e90
test
Browse files- main-copyy.py +64 -0
- main.py +29 -16
- realify2.py +70 -0
main-copyy.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from flask import Flask, request, jsonify, send_file
|
3 |
+
from flask_cors import CORS
|
4 |
+
from diffusers import AutoPipelineForImage2Image
|
5 |
+
from diffusers.utils import load_image, make_image_grid
|
6 |
+
from PIL import Image
|
7 |
+
import torch
|
8 |
+
import io
|
9 |
+
|
10 |
+
# Set environment variable to avoid fragmentation
|
11 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
|
12 |
+
|
13 |
+
# Clear any unused GPU memory
|
14 |
+
torch.cuda.empty_cache()
|
15 |
+
|
16 |
+
app = Flask(__name__)
|
17 |
+
CORS(app)
|
18 |
+
|
19 |
+
# Load the image-to-image pipeline from Hugging Face
|
20 |
+
pipe = AutoPipelineForImage2Image.from_pretrained("RunDiffusion/Juggernaut-X-v10", torch_dtype=torch.float16).to("cuda")
|
21 |
+
pipe.enable_xformers_memory_efficient_attention()
|
22 |
+
pipe.enable_vae_tiling() # Improve performance on large images
|
23 |
+
pipe.enable_vae_slicing() # Improve performance on large batches
|
24 |
+
|
25 |
+
@app.route('/')
|
26 |
+
def hello():
|
27 |
+
return {"Goes Wrong": "Keeping it real"}
|
28 |
+
|
29 |
+
@app.route('/generate', methods=['POST'])
|
30 |
+
def generate():
|
31 |
+
if 'image' not in request.files:
|
32 |
+
return jsonify({"error": "No image file provided"}), 400
|
33 |
+
|
34 |
+
image_file = request.files['image']
|
35 |
+
prompt = request.form.get('prompt', 'fleece hoodie, front zip, abstract pattern, GAP logo, high quality, photo')
|
36 |
+
negative_prompt = request.form.get('negative_prompt', 'low quality, bad quality, sketches, hanger')
|
37 |
+
guidance_scale = float(request.form.get('guidance_scale', 7))
|
38 |
+
num_images = int(request.form.get('num_images', 2))
|
39 |
+
|
40 |
+
sketch = Image.open(image_file)
|
41 |
+
|
42 |
+
with torch.inference_mode():
|
43 |
+
images = pipe(
|
44 |
+
prompt=prompt,
|
45 |
+
negative_prompt=negative_prompt,
|
46 |
+
image=sketch,
|
47 |
+
num_inference_steps=35,
|
48 |
+
guidance_scale=guidance_scale,
|
49 |
+
strength=0.5,
|
50 |
+
generator=torch.manual_seed(69),
|
51 |
+
num_images_per_prompt=num_images,
|
52 |
+
).images
|
53 |
+
|
54 |
+
grid = make_image_grid(images, rows=1, cols=num_images)
|
55 |
+
|
56 |
+
# Save the generated grid to a BytesIO object
|
57 |
+
img_byte_arr = io.BytesIO()
|
58 |
+
grid.save(img_byte_arr, format='PNG')
|
59 |
+
img_byte_arr.seek(0)
|
60 |
+
|
61 |
+
return send_file(img_byte_arr, mimetype='image/png')
|
62 |
+
|
63 |
+
if __name__ == '__main__':
|
64 |
+
app.run(debug=True)
|
main.py
CHANGED
@@ -1,10 +1,11 @@
|
|
|
|
|
|
1 |
import os
|
|
|
|
|
|
|
2 |
from flask import Flask, request, jsonify, send_file
|
3 |
from flask_cors import CORS
|
4 |
-
from diffusers import AutoPipelineForImage2Image
|
5 |
-
from diffusers.utils import load_image, make_image_grid
|
6 |
-
from PIL import Image
|
7 |
-
import torch
|
8 |
import io
|
9 |
|
10 |
# Set environment variable to avoid fragmentation
|
@@ -16,29 +17,40 @@ torch.cuda.empty_cache()
|
|
16 |
app = Flask(__name__)
|
17 |
CORS(app)
|
18 |
|
|
|
19 |
# Load the image-to-image pipeline from Hugging Face
|
20 |
pipe = AutoPipelineForImage2Image.from_pretrained("RunDiffusion/Juggernaut-X-v10", torch_dtype=torch.float16).to("cuda")
|
21 |
pipe.enable_xformers_memory_efficient_attention()
|
22 |
pipe.enable_vae_tiling() # Improve performance on large images
|
23 |
pipe.enable_vae_slicing() # Improve performance on large batches
|
|
|
24 |
|
25 |
@app.route('/')
|
26 |
def hello():
|
27 |
return {"Goes Wrong": "Keeping it real"}
|
28 |
|
29 |
-
@app.route('/
|
30 |
-
def
|
31 |
-
|
32 |
-
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
prompt =
|
36 |
-
negative_prompt =
|
37 |
-
guidance_scale = float(
|
38 |
-
num_images = int(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
sketch = Image.open(image_file)
|
41 |
-
|
42 |
with torch.inference_mode():
|
43 |
images = pipe(
|
44 |
prompt=prompt,
|
@@ -52,7 +64,8 @@ def generate():
|
|
52 |
).images
|
53 |
|
54 |
grid = make_image_grid(images, rows=1, cols=num_images)
|
55 |
-
|
|
|
56 |
# Save the generated grid to a BytesIO object
|
57 |
img_byte_arr = io.BytesIO()
|
58 |
grid.save(img_byte_arr, format='PNG')
|
|
|
1 |
+
from diffusers import AutoPipelineForImage2Image
|
2 |
+
import torch
|
3 |
import os
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
from diffusers.utils import load_image, make_image_grid
|
7 |
from flask import Flask, request, jsonify, send_file
|
8 |
from flask_cors import CORS
|
|
|
|
|
|
|
|
|
9 |
import io
|
10 |
|
11 |
# Set environment variable to avoid fragmentation
|
|
|
17 |
app = Flask(__name__)
|
18 |
CORS(app)
|
19 |
|
20 |
+
print('loading models...')
|
21 |
# Load the image-to-image pipeline from Hugging Face
|
22 |
pipe = AutoPipelineForImage2Image.from_pretrained("RunDiffusion/Juggernaut-X-v10", torch_dtype=torch.float16).to("cuda")
|
23 |
pipe.enable_xformers_memory_efficient_attention()
|
24 |
pipe.enable_vae_tiling() # Improve performance on large images
|
25 |
pipe.enable_vae_slicing() # Improve performance on large batches
|
26 |
+
print('loaded models...')
|
27 |
|
28 |
@app.route('/')
|
29 |
def hello():
|
30 |
return {"Goes Wrong": "Keeping it real"}
|
31 |
|
32 |
+
@app.route('/run_inference', methods=['POST'])
|
33 |
+
def run_inference():
|
34 |
+
data = request.get_json()
|
35 |
+
|
36 |
+
if 'url' not in data:
|
37 |
+
return jsonify({"error": "No imageurl provided"}), 400
|
38 |
|
39 |
+
# base64_image = data['base64_image']
|
40 |
+
prompt = data.get('prompt', 'fleece hoodie, front zip, abstract pattern, GAP logo, high quality, photo')
|
41 |
+
negative_prompt = data.get('negative_prompt', 'low quality, bad quality, sketches, hanger')
|
42 |
+
guidance_scale = float(data.get('guidance_scale', 7))
|
43 |
+
num_images = int(data.get('num_images', 2))
|
44 |
+
|
45 |
+
url = data.get('url', 'https://storage.googleapis.com/sketch-bucket/dresstest2.PNG')
|
46 |
+
sketch = load_image(url)
|
47 |
+
print(f'Loaded image URL: {url}')
|
48 |
+
|
49 |
+
# testing
|
50 |
+
# prompt = "long waist dress, puffed sleeves, fringes on sleeve and hem, high quality, photo"
|
51 |
+
# negative_prompt = "low quality, bad quality, sketches, hanger"
|
52 |
+
# guidance_scale = 7
|
53 |
|
|
|
|
|
54 |
with torch.inference_mode():
|
55 |
images = pipe(
|
56 |
prompt=prompt,
|
|
|
64 |
).images
|
65 |
|
66 |
grid = make_image_grid(images, rows=1, cols=num_images)
|
67 |
+
# images[0].save('output.png')
|
68 |
+
|
69 |
# Save the generated grid to a BytesIO object
|
70 |
img_byte_arr = io.BytesIO()
|
71 |
grid.save(img_byte_arr, format='PNG')
|
realify2.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from flask import Flask, request, jsonify, send_file
|
3 |
+
from flask_cors import CORS
|
4 |
+
from diffusers import AutoPipelineForImage2Image
|
5 |
+
from diffusers.utils import make_image_grid
|
6 |
+
from PIL import Image
|
7 |
+
import torch
|
8 |
+
import io
|
9 |
+
import base64
|
10 |
+
|
11 |
+
# Set environment variable to avoid fragmentation
|
12 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
|
13 |
+
|
14 |
+
# Clear any unused GPU memory
|
15 |
+
torch.cuda.empty_cache()
|
16 |
+
|
17 |
+
app = Flask(__name__)
|
18 |
+
CORS(app)
|
19 |
+
|
20 |
+
# Load the image-to-image pipeline from Hugging Face
|
21 |
+
pipe = AutoPipelineForImage2Image.from_pretrained("RunDiffusion/Juggernaut-X-v10", torch_dtype=torch.float16).to("cuda")
|
22 |
+
pipe.enable_xformers_memory_efficient_attention()
|
23 |
+
pipe.enable_vae_tiling() # Improve performance on large images
|
24 |
+
pipe.enable_vae_slicing() # Improve performance on large batches
|
25 |
+
print('loaded models...')
|
26 |
+
|
27 |
+
@app.route('/')
|
28 |
+
def hello():
|
29 |
+
return {"Goes Wrong": "Keeping it real"}
|
30 |
+
|
31 |
+
@app.route('/run_inference', methods=['POST'])
|
32 |
+
def run_inference():
|
33 |
+
data = request.get_json()
|
34 |
+
|
35 |
+
if 'base64_image' not in data:
|
36 |
+
return jsonify({"error": "No base64 image data provided"}), 400
|
37 |
+
|
38 |
+
base64_image = data['base64_image']
|
39 |
+
prompt = data.get('prompt', 'fleece hoodie, front zip, abstract pattern, GAP logo, high quality, photo')
|
40 |
+
negative_prompt = data.get('negative_prompt', 'low quality, bad quality, sketches, hanger')
|
41 |
+
guidance_scale = float(data.get('guidance_scale', 7))
|
42 |
+
num_images = int(data.get('num_images', 2))
|
43 |
+
|
44 |
+
# Decode the base64 image
|
45 |
+
image_data = base64.b64decode(base64_image)
|
46 |
+
sketch = Image.open(io.BytesIO(image_data))
|
47 |
+
|
48 |
+
with torch.inference_mode():
|
49 |
+
images = pipe(
|
50 |
+
prompt=prompt,
|
51 |
+
negative_prompt=negative_prompt,
|
52 |
+
image=sketch,
|
53 |
+
num_inference_steps=35,
|
54 |
+
guidance_scale=guidance_scale,
|
55 |
+
strength=0.5,
|
56 |
+
generator=torch.manual_seed(69),
|
57 |
+
num_images_per_prompt=num_images,
|
58 |
+
).images
|
59 |
+
|
60 |
+
grid = make_image_grid(images, rows=1, cols=num_images)
|
61 |
+
|
62 |
+
# Save the generated grid to a BytesIO object
|
63 |
+
img_byte_arr = io.BytesIO()
|
64 |
+
grid.save(img_byte_arr, format='PNG')
|
65 |
+
img_byte_arr.seek(0)
|
66 |
+
|
67 |
+
return send_file(img_byte_arr, mimetype='image/png')
|
68 |
+
|
69 |
+
if __name__ == '__main__':
|
70 |
+
app.run(debug=True)
|