douglasgoodwin commited on
Commit
4b84985
·
verified ·
1 Parent(s): 4504b89
Files changed (1) hide show
  1. app.py +11 -4
app.py CHANGED
@@ -3,12 +3,19 @@ from transformers import pipeline
3
  import pandas as pd
4
 
5
  # Load the Hugging Face pipeline
6
- classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion")
 
 
 
7
 
8
  # Define the full list of possible emotions (based on the model output structure)
9
  ALL_EMOTIONS = ["sadness", "joy", "love", "anger", "fear", "surprise"]
10
 
11
  def classify_emotion(text):
 
 
 
 
12
  # Make predictions using the Hugging Face pipeline
13
  predictions = classifier(text)
14
 
@@ -42,11 +49,11 @@ gr.Interface(
42
  ),
43
  outputs=[
44
  gr.BarPlot(
45
- x="Emotion", # Correct column for x-axis
46
- y="Score", # Correct column for y-axis
47
  label="Emotion Scores Bar Plot",
48
  title="Emotion Probabilities",
49
- color="#2563eb", # Color for the bars
50
  height=400,
51
  vertical=True
52
  ),
 
3
  import pandas as pd
4
 
5
  # Load the Hugging Face pipeline
6
+ classifier = pipeline(
7
+ "text-classification",
8
+ model="bhadresh-savani/distilbert-base-uncased-emotion"
9
+ )
10
 
11
  # Define the full list of possible emotions (based on the model output structure)
12
  ALL_EMOTIONS = ["sadness", "joy", "love", "anger", "fear", "surprise"]
13
 
14
  def classify_emotion(text):
15
+ # Check if input text is valid
16
+ if not text or not text.strip():
17
+ raise ValueError("Input text cannot be empty.") # Raise an error for invalid input
18
+
19
  # Make predictions using the Hugging Face pipeline
20
  predictions = classifier(text)
21
 
 
49
  ),
50
  outputs=[
51
  gr.BarPlot(
52
+ x="Emotion", # Specify the x-axis column
53
+ y="Score", # Specify the y-axis column
54
  label="Emotion Scores Bar Plot",
55
  title="Emotion Probabilities",
56
+ color="#2563eb", # Set the bar color
57
  height=400,
58
  vertical=True
59
  ),