douglasgoodwin commited on
Commit
9ad695e
·
verified ·
1 Parent(s): ae8f29b

better interface

Browse files
Files changed (1) hide show
  1. app.py +4 -3
app.py CHANGED
@@ -7,18 +7,19 @@ classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-b
7
  def classify_emotion(text):
8
  # Make predictions using the Hugging Face pipeline
9
  predictions = classifier(text)
 
10
  return {item["label"]: item["score"] for item in predictions}
11
 
12
  # Create a custom Gradio interface with title, description, and examples
13
  gr.Interface(
14
  fn=classify_emotion,
15
  inputs=gr.Textbox(
16
- placeholder="Enter text to analyze...",
17
  label="Input Text",
18
  lines=4
19
  ),
20
- outputs=gr.JSON(), # Display results in JSON format
21
- title="Emotion Detection with DistilBERT",
22
  description="This app uses the DistilBERT model fine-tuned for emotion detection. Enter a piece of text to analyze its emotional content!",
23
  examples=[
24
  "I am so happy to see you!",
 
7
  def classify_emotion(text):
8
  # Make predictions using the Hugging Face pipeline
9
  predictions = classifier(text)
10
+ # Convert predictions to a dictionary for gr.Label output
11
  return {item["label"]: item["score"] for item in predictions}
12
 
13
  # Create a custom Gradio interface with title, description, and examples
14
  gr.Interface(
15
  fn=classify_emotion,
16
  inputs=gr.Textbox(
17
+ placeholder="Enter text to analyze...",
18
  label="Input Text",
19
  lines=4
20
  ),
21
+ outputs=gr.Label(label="Emotion Probabilities"), # Use gr.Label for a cleaner interface
22
+ title="CMACHINES | Emotion Detection with DistilBERT",
23
  description="This app uses the DistilBERT model fine-tuned for emotion detection. Enter a piece of text to analyze its emotional content!",
24
  examples=[
25
  "I am so happy to see you!",