bar plot percentages and a text table
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
|
|
3 |
|
4 |
# Load the Hugging Face pipeline
|
5 |
classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion")
|
@@ -14,11 +15,20 @@ def classify_emotion(text):
|
|
14 |
# Initialize a dictionary with all emotions and a default score of 0
|
15 |
emotion_scores = {emotion: 0.0 for emotion in ALL_EMOTIONS}
|
16 |
|
17 |
-
# Update the dictionary with the
|
18 |
for item in predictions:
|
19 |
emotion_scores[item["label"]] = item["score"]
|
20 |
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
# Create a custom Gradio interface with title, description, and examples
|
24 |
gr.Interface(
|
@@ -28,9 +38,20 @@ gr.Interface(
|
|
28 |
label="Input Text",
|
29 |
lines=4
|
30 |
),
|
31 |
-
outputs=
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
examples=[
|
35 |
"I like you. I love you. Sometimes I hate you.",
|
36 |
"I'm really angry about what happened.",
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
+
import pandas as pd
|
4 |
|
5 |
# Load the Hugging Face pipeline
|
6 |
classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion")
|
|
|
15 |
# Initialize a dictionary with all emotions and a default score of 0
|
16 |
emotion_scores = {emotion: 0.0 for emotion in ALL_EMOTIONS}
|
17 |
|
18 |
+
# Update the dictionary with the scores returned by the model
|
19 |
for item in predictions:
|
20 |
emotion_scores[item["label"]] = item["score"]
|
21 |
|
22 |
+
# Create a dataframe for the bar plot
|
23 |
+
df = pd.DataFrame.from_dict(emotion_scores, orient="index").reset_index()
|
24 |
+
df.columns = ["Emotion", "Score"]
|
25 |
+
|
26 |
+
# Prepare a text-based table for display
|
27 |
+
table = "Emotion Scores:\n"
|
28 |
+
table += "----------------\n"
|
29 |
+
table += "\n".join([f"{emotion}: {score:.4f}" for emotion, score in emotion_scores.items()])
|
30 |
+
|
31 |
+
return df, table
|
32 |
|
33 |
# Create a custom Gradio interface with title, description, and examples
|
34 |
gr.Interface(
|
|
|
38 |
label="Input Text",
|
39 |
lines=4
|
40 |
),
|
41 |
+
outputs=[
|
42 |
+
gr.BarPlot(
|
43 |
+
x="Emotion",
|
44 |
+
y="Score",
|
45 |
+
label="Emotion Scores Bar Plot",
|
46 |
+
title="Emotion Probabilities",
|
47 |
+
color="#2563eb", # Color for the bars
|
48 |
+
height=400,
|
49 |
+
vertical=True
|
50 |
+
),
|
51 |
+
gr.Textbox(label="Emotion Scores Table") # Text-based table output
|
52 |
+
],
|
53 |
+
title="CMACHINES25 | Emotion Detection with DistilBERT",
|
54 |
+
description="This app uses the DistilBERT model fine-tuned for emotion detection. Enter a piece of text to analyze its emotional content! Both a bar plot and a text table of the scores will be displayed.",
|
55 |
examples=[
|
56 |
"I like you. I love you. Sometimes I hate you.",
|
57 |
"I'm really angry about what happened.",
|