more involved
Browse files
app.py
CHANGED
@@ -1,12 +1,25 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
-
# Load the
|
4 |
-
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
examples=[
|
11 |
"I am so happy to see you!",
|
12 |
"I'm really angry about what happened.",
|
@@ -14,4 +27,4 @@ interface.launch(
|
|
14 |
"I'm worried about the upcoming exam.",
|
15 |
"Fear is the mind-killer. I will face my fear."
|
16 |
]
|
17 |
-
)
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
|
4 |
+
# Load the Hugging Face pipeline
|
5 |
+
classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion")
|
6 |
|
7 |
+
def classify_emotion(text):
|
8 |
+
# Make predictions using the Hugging Face pipeline
|
9 |
+
predictions = classifier(text)
|
10 |
+
return {item["label"]: item["score"] for item in predictions}
|
11 |
+
|
12 |
+
# Create a custom Gradio interface with title, description, and examples
|
13 |
+
gr.Interface(
|
14 |
+
fn=classify_emotion,
|
15 |
+
inputs=gr.Textbox(
|
16 |
+
placeholder="Enter text to analyze...",
|
17 |
+
label="Input Text",
|
18 |
+
lines=4
|
19 |
+
),
|
20 |
+
outputs=gr.JSON(), # Display results in JSON format
|
21 |
+
title="Emotion Detection with DistilBERT",
|
22 |
+
description="This app uses the DistilBERT model fine-tuned for emotion detection. Enter a piece of text to analyze its emotional content!",
|
23 |
examples=[
|
24 |
"I am so happy to see you!",
|
25 |
"I'm really angry about what happened.",
|
|
|
27 |
"I'm worried about the upcoming exam.",
|
28 |
"Fear is the mind-killer. I will face my fear."
|
29 |
]
|
30 |
+
).launch()
|