dadc / app.py
abidlabs's picture
abidlabs HF staff
Update app.py
baaac94
raw
history blame
3.31 kB
# Basic example for doing model-in-the-loop dynamic adversarial data collection
# using Gradio Blocks.
import random
from urllib.parse import parse_qs
import gradio as gr
import requests
from transformers import pipeline
pipe = pipeline("sentiment-analysis")
demo = gr.Blocks()
with demo:
total_cnt = 2 # How many examples per HIT
dummy = gr.Textbox(visible=False) # dummy for passing assignmentId
# We keep track of state as a Variable
state_dict = {"assignmentId": "", "cnt": 0, "fooled": 0, "data": [], "metadata": {}}
state = gr.Variable(state_dict)
gr.Markdown("# DADC in Gradio example")
gr.Markdown("Try to fool the model and find an example where it predicts the wrong label!")
state_display = gr.Markdown(f"State: 0/{total_cnt} (0 fooled)")
# Generate model prediction
# Default model: distilbert-base-uncased-finetuned-sst-2-english
def _predict(txt, tgt, state):
pred = pipe(txt)[0]
other_label = 'negative' if pred['label'].lower() == "positive" else "positive"
pred_confidences = {pred['label'].lower(): pred['score'], other_label: 1 - pred['score']}
pred["label"] = pred["label"].title()
ret = f"Target: **{tgt}**. Model prediction: **{pred['label']}**\n\n"
if pred["label"] != tgt:
state["fooled"] += 1
ret += " You fooled the model! Well done!"
else:
ret += " You did not fool the model! Too bad, try again!"
state["data"].append(ret)
state["cnt"] += 1
done = state["cnt"] == total_cnt
toggle_final_submit = gr.update(visible=done)
toggle_example_submit = gr.update(visible=not done)
new_state_md = f"State: {state['cnt']}/{total_cnt} ({state['fooled']} fooled)"
return pred_confidences, ret, state, toggle_example_submit, toggle_final_submit, new_state_md
# Input fields
text_input = gr.Textbox(placeholder="Enter model-fooling statement", show_label=False)
labels = ["Positive", "Negative"]
random.shuffle(labels)
label_input = gr.Radio(choices=labels, label="Target (correct) label")
label_output = gr.Label()
text_output = gr.Markdown()
with gr.Column() as example_submit:
submit_ex_button = gr.Button("Submit")
with gr.Column(visible=False) as final_submit:
submit_hit_button = gr.Button("Submit HIT")
# Submit state to MTurk backend for ExternalQuestion
# Update the URL below to switch from Sandbox to real data collection
def _submit(state, dummy):
query = parse_qs(dummy[1:])
assert "assignmentId" in query, "No assignment ID provided, unable to submit"
state["assignmentId"] = query["assignmentId"]
url = "https://workersandbox.mturk.com/mturk/externalSubmit"
return requests.post(url, data=state)
# Button event handlers
submit_ex_button.click(
_predict,
inputs=[text_input, label_input, state],
outputs=[label_output, text_output, state, example_submit, final_submit, state_display],
)
submit_hit_button.click(
_submit,
inputs=[state, dummy],
outputs=None,
_js="function(state, dummy) { return [state, window.location.search]; }",
)
demo.launch(favicon_path="https://huggingface.co/favicon.ico")