Spaces:
Build error
Build error
import gradio as gr | |
import tensorflow as tf | |
from tensorflow.keras.layers import TextVectorization | |
# Load the saved model | |
model = tf.keras.models.load_model('toxicity.h5') | |
# Columns names | |
columns = ['toxic', 'severe_toxic', 'obscene', 'threat','insult', 'identity_hate'] | |
# Specifying the maximum number of words in the vocabulary | |
MAX_FEATURES=200000 | |
# Creating a TextVectorization layer with the specified parameters | |
vectorizer = TextVectorization(max_tokens=MAX_FEATURES,output_sequence_length=1800,output_mode="int") | |
# Define a function to score a comment | |
def score_comment(comment): | |
# Vectorize the comment using the vectorizer | |
vectorized_comment = vectorizer([comment]) | |
# Get the prediction results from the model | |
results = model.predict(vectorized_comment) | |
# Create a string to return the prediction results for each class | |
text = '' | |
for idx,col in enumerate(columns): | |
text += '{}: {}\n'.format(col,results[0][idx]>0.5) | |
return text | |
# Create a Gradio interface for the score_comment function | |
interface = gr.Interface(fn=score_comment,inputs=gr.inputs.Textbox(lines=2,placeholder="Comment to score"),outputs="text",title='Comment Toxicity Classifier') | |
# Launch the Gradio interface | |
interface.launch() |