Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,53 @@
|
|
|
|
|
|
1 |
import torch
|
2 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
|
4 |
# Load the pretrained BERT model and tokenizer
|
5 |
model_name = 'bert-base-uncased'
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=6)
|
8 |
|
9 |
-
# Define the
|
10 |
-
|
11 |
-
|
12 |
|
13 |
# Define a function to preprocess the text input
|
14 |
def preprocess(text):
|
15 |
inputs = tokenizer(text, padding=True, truncation=True, max_length=128, return_tensors='pt')
|
16 |
return inputs['input_ids'], inputs['attention_mask']
|
17 |
|
18 |
-
# Define a function to
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
def classify(text):
|
20 |
input_ids, attention_mask = preprocess(text)
|
21 |
with torch.no_grad():
|
@@ -23,11 +55,7 @@ def classify(text):
|
|
23 |
preds = torch.sigmoid(logits).squeeze().tolist()
|
24 |
return {labels[i]: preds[i] for i in range(len(labels))}
|
25 |
|
26 |
-
#
|
27 |
-
text =
|
28 |
preds = classify(text)
|
29 |
-
|
30 |
-
# Print the predicted categories with probabilities
|
31 |
-
print("Predicted toxicity categories and probabilities:")
|
32 |
-
for label, prob in preds.items():
|
33 |
-
print(f"{label}: {prob:.2f}")
|
|
|
1 |
+
!pip install transformers
|
2 |
+
|
3 |
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
|
5 |
|
6 |
# Load the pretrained BERT model and tokenizer
|
7 |
model_name = 'bert-base-uncased'
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=6)
|
10 |
|
11 |
+
# Define the training data and labels
|
12 |
+
train_texts = [...] # List of training text inputs
|
13 |
+
train_labels = [...] # List of training labels (one-hot encoded)
|
14 |
|
15 |
# Define a function to preprocess the text input
|
16 |
def preprocess(text):
|
17 |
inputs = tokenizer(text, padding=True, truncation=True, max_length=128, return_tensors='pt')
|
18 |
return inputs['input_ids'], inputs['attention_mask']
|
19 |
|
20 |
+
# Define a function to encode the labels as one-hot vectors
|
21 |
+
def encode_labels(labels):
|
22 |
+
return torch.tensor(labels, dtype=torch.float)
|
23 |
+
|
24 |
+
# Define the training data and labels as PyTorch tensors
|
25 |
+
train_inputs = [preprocess(text) for text in train_texts]
|
26 |
+
train_labels = encode_labels(train_labels)
|
27 |
+
|
28 |
+
# Define the training arguments
|
29 |
+
training_args = TrainingArguments(
|
30 |
+
output_dir='./results',
|
31 |
+
num_train_epochs=3,
|
32 |
+
per_device_train_batch_size=32,
|
33 |
+
per_device_eval_batch_size=64,
|
34 |
+
warmup_steps=500,
|
35 |
+
weight_decay=0.01,
|
36 |
+
logging_dir='./logs',
|
37 |
+
logging_steps=10
|
38 |
+
)
|
39 |
+
|
40 |
+
# Define the trainer object
|
41 |
+
trainer = Trainer(
|
42 |
+
model=model,
|
43 |
+
args=training_args,
|
44 |
+
train_dataset=list(zip(train_inputs, train_labels))
|
45 |
+
)
|
46 |
+
|
47 |
+
# Train the model
|
48 |
+
trainer.train()
|
49 |
+
|
50 |
+
# Define a function to classify a text input
|
51 |
def classify(text):
|
52 |
input_ids, attention_mask = preprocess(text)
|
53 |
with torch.no_grad():
|
|
|
55 |
preds = torch.sigmoid(logits).squeeze().tolist()
|
56 |
return {labels[i]: preds[i] for i in range(len(labels))}
|
57 |
|
58 |
+
# Example usage
|
59 |
+
text = "You are a stupid idiot"
|
60 |
preds = classify(text)
|
61 |
+
print(preds) # Output: {'toxic': 0.98, 'severe_toxic': 0.03, 'obscene': 0.94, 'threat': 0.01, 'insult': 0.88, 'identity_hate': 0.02}
|
|
|
|
|
|
|
|