Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,51 +1,22 @@
|
|
|
|
|
|
1 |
import torch
|
2 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
|
4 |
-
# Load the
|
5 |
-
model_name =
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=6)
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
train_labels = [...] # List of training labels (one-hot encoded)
|
12 |
|
13 |
-
# Define
|
14 |
def preprocess(text):
|
15 |
-
inputs = tokenizer(text, padding=True, truncation=True, max_length=128, return_tensors=
|
16 |
-
return inputs[
|
17 |
|
18 |
-
# Define
|
19 |
-
def encode_labels(labels):
|
20 |
-
return torch.tensor(labels, dtype=torch.float)
|
21 |
-
|
22 |
-
# Define the training data and labels as PyTorch tensors
|
23 |
-
train_inputs = [preprocess(text) for text in train_texts]
|
24 |
-
train_labels = encode_labels(train_labels)
|
25 |
-
|
26 |
-
# Define the training arguments
|
27 |
-
training_args = TrainingArguments(
|
28 |
-
output_dir='./results',
|
29 |
-
num_train_epochs=3,
|
30 |
-
per_device_train_batch_size=32,
|
31 |
-
per_device_eval_batch_size=64,
|
32 |
-
warmup_steps=500,
|
33 |
-
weight_decay=0.01,
|
34 |
-
logging_dir='./logs',
|
35 |
-
logging_steps=10
|
36 |
-
)
|
37 |
-
|
38 |
-
# Define the trainer object
|
39 |
-
trainer = Trainer(
|
40 |
-
model=model,
|
41 |
-
args=training_args,
|
42 |
-
train_dataset=list(zip(train_inputs, train_labels))
|
43 |
-
)
|
44 |
-
|
45 |
-
# Train the model
|
46 |
-
trainer.train()
|
47 |
-
|
48 |
-
# Define a function to classify a text input
|
49 |
def classify(text):
|
50 |
input_ids, attention_mask = preprocess(text)
|
51 |
with torch.no_grad():
|
@@ -53,4 +24,13 @@ def classify(text):
|
|
53 |
preds = torch.sigmoid(logits).squeeze().tolist()
|
54 |
return {labels[i]: preds[i] for i in range(len(labels))}
|
55 |
|
56 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pip install transformers
|
2 |
+
import pandas as pd
|
3 |
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
5 |
|
6 |
+
# Load the pre-trained BERT model and tokenizer
|
7 |
+
model_name = "bert-base-uncased"
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=6)
|
10 |
|
11 |
+
# Load the data
|
12 |
+
data = pd.read_csv("toxic_comments.csv")
|
|
|
13 |
|
14 |
+
# Define the function to preprocess the text
|
15 |
def preprocess(text):
|
16 |
+
inputs = tokenizer(text, padding=True, truncation=True, max_length=128, return_tensors="pt")
|
17 |
+
return inputs["input_ids"], inputs["attention_mask"]
|
18 |
|
19 |
+
# Define the function to classify a text input
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def classify(text):
|
21 |
input_ids, attention_mask = preprocess(text)
|
22 |
with torch.no_grad():
|
|
|
24 |
preds = torch.sigmoid(logits).squeeze().tolist()
|
25 |
return {labels[i]: preds[i] for i in range(len(labels))}
|
26 |
|
27 |
+
# Define the labels
|
28 |
+
labels = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"]
|
29 |
+
|
30 |
+
# Classify the comments and print the results
|
31 |
+
for i, row in data.iterrows():
|
32 |
+
text = row["comment_text"]
|
33 |
+
preds = classify(text)
|
34 |
+
print("Comment: ", text)
|
35 |
+
print("Predictions: ", preds)
|
36 |
+
print("Labels: ", row[labels].to_dict())
|