File size: 1,419 Bytes
ad5af57 2dbc820 d5e4d5c 279feee d5e4d5c 2dbc820 d5e4d5c 279feee d5e4d5c 279feee d5e4d5c 279feee d5e4d5c 279feee d5e4d5c 279feee d5e4d5c 279feee d5e4d5c 279feee d5e4d5c 279feee d5e4d5c 2dbc820 d5e4d5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import streamlit as st
import numpy as np
from PIL import Image
# Load your similarity search system and define a function to find similar images
def find_similar_images(image):
# Your code here
return similar_images
# Define the Streamlit app
def app():
st.title('Image Similarity Search')
# Define the test dataset and allow the user to choose an image
test_images = ['image1.jpg', 'image2.jpg', 'image3.jpg']
image_choice = st.selectbox('Select an image:', test_images)
# Load the selected image
image = Image.open(image_choice)
# Display the selected image
st.image(image, caption='Selected Image', use_column_width=True)
# Allow the user to upload an image
uploaded_file = st.file_uploader('Upload an image:', type=['jpg', 'png'])
if uploaded_file is not None:
# Load the uploaded image
uploaded_image = Image.open(uploaded_file)
# Display the uploaded image
st.image(uploaded_image, caption='Uploaded Image', use_column_width=True)
# Find the most similar images
similar_images = find_similar_images(uploaded_image)
# Display the similar images
for i in range(len(similar_images)):
st.image(similar_images[i], caption='Similar Image ' + str(i+1), use_column_width=True)
# Run the Streamlit app
if __name__ == '__main__':
app() |