Update app.py
Browse files
app.py
CHANGED
@@ -1,49 +1,50 @@
|
|
1 |
-
|
2 |
import torch
|
|
|
|
|
|
|
|
|
3 |
from PIL import Image
|
4 |
|
|
|
|
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
model =
|
9 |
|
10 |
# Set the model to evaluation mode
|
11 |
model.eval()
|
12 |
|
13 |
-
#
|
14 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
15 |
-
|
16 |
-
# Define the preprocessing pipeline
|
17 |
preprocess = transforms.Compose([
|
18 |
transforms.Resize(256),
|
19 |
transforms.CenterCrop(224),
|
20 |
transforms.ToTensor(),
|
21 |
-
transforms.Normalize(
|
22 |
-
|
|
|
|
|
23 |
])
|
24 |
|
25 |
-
# Define
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
#
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
features = extract_features(image_path, model, tokenizer, preprocess)
|
48 |
-
# Add the features to the dictionary
|
49 |
-
features_dict[image_name] = features
|
|
|
|
|
1 |
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torchvision.models as models
|
4 |
+
import torchvision.transforms as transforms
|
5 |
+
import os
|
6 |
from PIL import Image
|
7 |
|
8 |
+
# Define the ResNet-50 model
|
9 |
+
model = models.resnet50(pretrained=True)
|
10 |
|
11 |
+
# Remove the classification head (the fully connected layer)
|
12 |
+
num_features = model.fc.in_features
|
13 |
+
model.fc = nn.Identity()
|
14 |
|
15 |
# Set the model to evaluation mode
|
16 |
model.eval()
|
17 |
|
18 |
+
# Define the preprocessing transforms
|
|
|
|
|
|
|
19 |
preprocess = transforms.Compose([
|
20 |
transforms.Resize(256),
|
21 |
transforms.CenterCrop(224),
|
22 |
transforms.ToTensor(),
|
23 |
+
transforms.Normalize(
|
24 |
+
mean=[0.485, 0.456, 0.406],
|
25 |
+
std=[0.229, 0.224, 0.225]
|
26 |
+
)
|
27 |
])
|
28 |
|
29 |
+
# Define the dictionary to store the feature vectors
|
30 |
+
features = {}
|
31 |
+
|
32 |
+
# Iterate over the images and extract the features
|
33 |
+
image_dir = 'lfw'
|
34 |
+
for root, dirs, files in os.walk(image_dir):
|
35 |
+
for file in files:
|
36 |
+
# Load the image
|
37 |
+
image_path = os.path.join(root, file)
|
38 |
+
image = Image.open(image_path).convert('RGB')
|
39 |
+
|
40 |
+
# Apply the preprocessing transforms
|
41 |
+
input_tensor = preprocess(image)
|
42 |
+
input_batch = input_tensor.unsqueeze(0)
|
43 |
+
|
44 |
+
# Extract the features from the penultimate layer
|
45 |
+
with torch.no_grad():
|
46 |
+
features_tensor = model(input_batch)
|
47 |
+
features_vector = torch.squeeze(features_tensor).numpy()
|
48 |
+
|
49 |
+
# Store the feature vector in the dictionary
|
50 |
+
features[file] = features_vector
|
|
|
|
|
|