Create one.py
Browse files
one.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
import tensorflow as tf
|
5 |
+
from tensorflow.keras.applications.resnet50 import ResNet50
|
6 |
+
|
7 |
+
# Set the path to the dataset
|
8 |
+
data_path = '/content/lfw/'
|
9 |
+
|
10 |
+
# Load the dataset
|
11 |
+
images = []
|
12 |
+
labels = []
|
13 |
+
|
14 |
+
for folder_name in os.listdir(data_path):
|
15 |
+
folder_path = os.path.join(data_path, folder_name)
|
16 |
+
if not os.path.isdir(folder_path):
|
17 |
+
continue
|
18 |
+
for file_name in os.listdir(folder_path):
|
19 |
+
file_path = os.path.join(folder_path, file_name)
|
20 |
+
if not file_path.endswith('.jpg'):
|
21 |
+
continue
|
22 |
+
image = np.array(Image.open(file_path).convert('RGB'))
|
23 |
+
label = folder_name
|
24 |
+
images.append(image)
|
25 |
+
labels.append(label)
|
26 |
+
|
27 |
+
# Convert to numpy arrays
|
28 |
+
images = np.array(images)
|
29 |
+
labels = np.array(labels)
|
30 |
+
|
31 |
+
# Perform necessary preprocessing on the images
|
32 |
+
preprocessed_images = tf.keras.applications.resnet50.preprocess_input(images)
|
33 |
+
|
34 |
+
# Obtain a ResNet50 model pre-trained on ImageNet
|
35 |
+
model = ResNet50(include_top=False, pooling='avg')
|
36 |
+
|
37 |
+
# Extract features from the penultimate layer of the network
|
38 |
+
features = model.predict(preprocessed_images)
|
39 |
+
|
40 |
+
# Store the features in a dictionary
|
41 |
+
features_dict = {}
|
42 |
+
for i in range(len(labels)):
|
43 |
+
features_dict[labels[i]] = features[i]
|
44 |
+
|
45 |
+
# Use a nearest neighbor algorithm to obtain the 10 most similar images to each query image
|
46 |
+
from sklearn.neighbors import NearestNeighbors
|
47 |
+
|
48 |
+
# Initialize the nearest neighbor algorithm with cosine distance
|
49 |
+
nn = NearestNeighbors(n_neighbors=10, metric='cosine')
|
50 |
+
|
51 |
+
# Fit the algorithm to the features
|
52 |
+
nn.fit(list(features_dict.values()))
|
53 |
+
|
54 |
+
# Define a function to retrieve the most similar images to a query image
|
55 |
+
def retrieve_similar_images(query_image_path):
|
56 |
+
# Load the query image
|
57 |
+
query_image = np.array(Image.open(query_image_path).convert('RGB'))
|
58 |
+
|
59 |
+
# Perform necessary preprocessing on the query image
|
60 |
+
preprocessed_query_image = tf.keras.applications.resnet50.preprocess_input(np.array([query_image]))
|
61 |
+
|
62 |
+
# Extract features from the query image
|
63 |
+
query_features = model.predict(preprocessed_query_image)
|
64 |
+
|
65 |
+
# Use the nearest neighbor algorithm to retrieve the most similar images
|
66 |
+
distances, indices = nn.kneighbors(query_features)
|
67 |
+
|
68 |
+
# Display the most similar images
|
69 |
+
for i in range(len(indices[0])):
|
70 |
+
image_path = list(features_dict.keys())[list(features_dict.values()).index(features[indices[0][i]])]
|
71 |
+
image = Image.open(os.path.join(data_path, image_path)).convert('RGB')
|
72 |
+
image.show()
|