|
from langchain.embeddings.openai import OpenAIEmbeddings |
|
from langchain.vectorstores import Chroma |
|
from langchain.text_splitter import CharacterTextSplitter |
|
from langchain.chains.question_answering import load_qa_chain |
|
from langchain.llms import OpenAI |
|
import os |
|
|
|
with open("guide1.txt") as f: |
|
hitchhikersguide = f.read() |
|
|
|
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0, separator = "\n") |
|
texts = text_splitter.split_text(hitchhikersguide) |
|
|
|
embeddings = OpenAIEmbeddings() |
|
|
|
docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))]).as_retriever() |
|
|
|
chain = load_qa_chain(OpenAI(temperature=0), chain_type="stuff") |
|
|
|
def make_inference(query): |
|
docs = docsearch.get_relevant_documents(query) |
|
return(chain.run(input_documents=docs, question=query)) |
|
|
|
if __name__ == "__main__": |
|
|
|
import gradio as gr |
|
|
|
gr.Interface( |
|
make_inference, |
|
[ |
|
gr.Textbox(lines=2, label="Query"), |
|
], |
|
gr.Textbox(label="Response"), |
|
title="🗣️TalkToMyDoc📄", |
|
description="🗣️TalkToMyDoc📄 is a tool that allows you to ask questions about a document. In this case - Hitch Hitchhiker's Guide to the Galaxy.", |
|
).launch() |