from tensorflow import keras from PIL import Image import numpy as np import io def create_model() -> keras.Model: return keras.models.load_model("model") def run_model(image: io.BytesIO, model: keras.Model) -> Image.Image: image: Image.Image = Image.open(image) width: int = image.size[0] height: int = image.size[1] image: Image.Image = image.resize((960, 640)) image: np.ndarray = keras.utils.img_to_array(image) image: np.ndarray = image.astype("float32") / 255.0 image: np.ndarray = np.expand_dims(image, axis=0) output: np.ndarray = model.predict(image) output_image: np.ndarray = output[0] * 255.0 output_image: np.ndarray = output_image.clip(0, 255) output_image: np.ndarray = output_image.reshape( (np.shape(output_image)[0], np.shape(output_image)[1], 3) ) output_image: np.ndarray = np.uint32(output_image) output_image: np.ndarray = output_image.astype(np.uint8) output_image: Image.Image = Image.fromarray(output_image) output_image: Image.Image = output_image.resize((width, height)) output_image.save("user_data/output.jpg") return output_image